# For the pair of equations$\lambda x+3 y=-7$$2 x+6 y=14$to have infinitely many solutions, the value of $\lambda$ should be 1 . Is the statement true? Give reasons.

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

Given :

The given pair of equations is,

$\lambda x+3 y=-7$
$2 x+6 y=14$

To find :

We have to find whether the value of $\lambda$ is 1.

Solution:

We know that,

The condition for infinitely many solutions is,

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

$\lambda x+3 y+7=0$
$2 x+6 y-14=0$

Here,

$a_1=\lambda, b_1=3, c_1=7$

$a_2=2, b_2=6, c_2=-14$

Therefore,

$\frac{a_1}{a_2}=\frac{\lambda}{2}$

$\frac{b_1}{b_2}=\frac{3}{6}=\frac{1}{2}$

$\frac{c_1}{c_2}=\frac{7}{-14}=-\frac{1}{2}$

This implies,

$\frac{\lambda}{2}=\frac{1}{2}$

$\lambda=1$

$\frac{\lambda}{2}=-\frac{1}{2}$

$\lambda=-1$

Here,

$\lambda$ does not have a unique value.

Hence, for no value of $\lambda$ the given pair of linear equations has infinitely many solutions.

Updated on 10-Oct-2022 13:27:13