- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# For which value(s) of $ \lambda $, do the pair of linear equations $ \lambda x+y=\lambda^{2} $ and $ x+\lambda y=1 $ have no solution?

Given:

The given system of equations is:

\( \lambda x+y=\lambda^{2} \) and \( x+\lambda y=1 \)

To do:

We have to find the value of $\lambda$ for which the given system of equations have

(i) no solution.

(ii) infinitely many solutions

(iii) a unique solution

Solution:

The given system of equations can be written as:

$\lambda x + y -\lambda^2=0$

$x + \lambda y -1=0$

The standard form of system of equations of two variables is $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y-c_{2}=0$.

Comparing the given system of equations with the standard form of equations, we have,

$a_1=\lambda, b_1=1, c_1=-\lambda^2$ and $a_2=1, b_2=\lambda, c_2=-1$

(i) The condition for which the above system of equations has no solution is

$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} ≠ \frac{c_{1}}{c_{2}} \ $

Therefore,

$\frac{\lambda}{1}=\frac{1}{\lambda}≠\frac{-\lambda^2}{-1}$

$\lambda=\frac{1}{\lambda}≠\lambda^2$

$\lambda=\frac{1}{\lambda}$ and $\frac{1}{\lambda}≠\lambda^2$

$\lambda \times \lambda=1$ and $\lambda^2 \times \lambda≠1$

$\lambda^2=1$ and $\lambda^3≠1$

$\lambda=1$ or $\lambda=-1$ and $\lambda≠1$

Therefore,

$\lambda=-1$

The value of **$\lambda$** for which the given system of equations has no solution is $-1$.

(ii) The condition for which the above system of equations has infinitely many solutions is

$\frac{a_{1}}{a_{2}} \ =\frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \ $

Therefore,

$\frac{\lambda}{1}=\frac{1}{\lambda}=\frac{-\lambda^2}{-1}$

$\lambda=\frac{1}{\lambda}=\lambda^2$

$\lambda=\frac{1}{\lambda}$ and $\frac{1}{\lambda}=\lambda^2$

$\lambda \times \lambda=1$ and $\lambda^2 \times \lambda=1$

$\lambda^2=1$ and $\lambda^3=1$

$\lambda=1$ or $\lambda=-1$ and $\lambda=1$

Therefore,

$\lambda=1$

The value of **$\lambda$** for which the given system of equations has infinitely many solutions is $1$.

(iii) The condition for which the above system of equations has a unique solution is

$\frac{a_{1}}{a_{2}} \ ≠ \frac{b_{1}}{b_{2}} \ $

Therefore,

$\frac{\lambda}{1}≠ \frac{1}{\lambda}$

$\lambda≠ \frac{1}{\lambda}$

$\lambda \times \lambda≠ 1$

$\lambda^2≠ 1$

$\lambda≠ 1$ or $\lambda≠ -1$

Therefore, the values of **$\lambda$** for which the given system of equations have a unique solution is "All real values except $-1$ and $1$".

- Related Questions & Answers
- Lambda Expressions in C#
- Lambda expression in C++
- Lambda Functions in Ruby
- Lambda and filter in Python Examples
- Lambda and filter Examples in Python
- Significance of Lambda Function in C/C++
- Lambda expression in Java 8
- Java Lambda Expression with Collections
- What are the advantages of Lambda Expressions in Java?
- What are the characteristics of lambda expressions in Java?
- What is the syntax for lambda expressions in Java?
- What are the rules for the body of lambda expression in Java?
- How many parameters can a lambda expression have in Java?
- What are lambda expressions in C#?
- Generalized Lambda Expressions in C++14
- What is lambda binding in Python?