- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find whether the following equations have real roots. If real roots exist, find them.
$ 8 x^{2}+2 x-3=0 $
To do:
We have to determine whether the given quadratic equations have real roots.
Solution:
(i) Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=8, b=2$ and $c=-3$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(2)^2-4(8)(-3)=4+96=100$.
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-2 \pm \sqrt{100}}{2(8)}$
$x=\frac{-2 \pm 10}{16}$
$x=\frac{-2+10}{16}$ or $x= \frac{-2-10}{16}$
$x=\frac{8}{16}$ or $x=\frac{-12}{16}$
$x=\frac{1}{2}$ or $x=\frac{-3}{4}$
The roots of the given quadratic equation are $\frac{1}{2}$ and $-\frac{3}{4}$.
(ii) Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=-2, b=3$ and $c=2$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(3)^2-4(-2)(2)$
$=9+16$
$=25$.
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-3 \pm \sqrt{25}}{2(-2)}$
$x=\frac{-3 \pm 5}{-4}$
$x=\frac{-3+5}{-4}$ or $x= \frac{-3-5}{-4}$
$x=\frac{2}{-4}$ or $x=\frac{-8}{-4}$
$x=-\frac{1}{2}$ or $x=2$
The roots of the given quadratic equation are $-\frac{1}{2}$ and $2$.
(iii) Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=5, b=-2$ and $c=-10$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(-2)^2-4(5)(-10)$
$=4+200$
$=204$.
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-(-2) \pm \sqrt{204}}{2(5)}$
$x=\frac{2 \pm 2\sqrt{51}}{10}$
$x=\frac{2(1+\sqrt{51})}{10}$ or $x= \frac{2(1-\sqrt{51})}{10}$
$x=\frac{1+\sqrt{51}}{5}$ or $x=\frac{1-\sqrt{51}}{5}$
The roots of the given quadratic equation are $\frac{1+\sqrt{51}}{5}$ and $\frac{1-\sqrt{51}}{5}$.
(iv) $\frac{1}{2 x-3}+\frac{1}{x-5}=1$
$\frac{x-5+2 x-3}{(2 x-3)(x-5)}=1$
$\frac{3 x-8}{2 x^{2}-3x-10 x+15}=1$
$\frac{3 x-8}{2 x^{2}-13x+15}=1$
$3 x-8 =2 x^{2}-13 x+15$
$2 x^{2}-13 x-3 x+15+8 =0$
$2 x^{2}-16x+23=0$
Comparing the above quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=2, b=-16$ and $c=23$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(-16)^2-4(2)(23)$
$=256-184$
$=72$
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-(-16) \pm \sqrt{72}}{2(2)}$
$x=\frac{16 \pm 6\sqrt{2}}{4}$
$x=\frac{2(8+3\sqrt{2})}{4}$ or $x= \frac{2(8-3\sqrt{2})}{4}$
$x=\frac{8+3\sqrt{2}}{2}$ or $x=\frac{8-3\sqrt{2}}{2}$
The roots of the given quadratic equation are $\frac{8+3\sqrt{2}}{2}$ and $\frac{8-3\sqrt{2}}{2}$.
(v) Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=1, b=5 \sqrt{5}$ and $c=-70$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(5 \sqrt{5})^2-4(1)(-70)$
$=125+280$
$=405$.
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-5 \sqrt{5} \pm \sqrt{405}}{2(1)}$
$x=\frac{-5 \sqrt{5}\pm 9\sqrt5}{2}$
$x=\frac{-5 \sqrt{5}+9 \sqrt{5}}{2}$ or $x= \frac{-5 \sqrt{5}-9 \sqrt{5}}{2}$
$x=\frac{4\sqrt{5}}{2}$ or $x=\frac{-14 \sqrt{5}}{2}$
$x=2\sqrt5$ or $x=-7\sqrt5$
The roots of the given quadratic equation are $-7\sqrt5$ and $2\sqrt5$.
- Related Articles
- Find whether the following equations have real roots. If real roots exist, find them.\( -2 x^{2}+3 x+2=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( 5 x^{2}-2 x-10=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( x^{2}+5 \sqrt{5} x-70=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( \frac{1}{2 x-3}+\frac{1}{x-5}=1, x ≠ \frac{3}{2}, 5 \)
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $x^2+x+2=0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $2x^2-2\sqrt6 x+3=0$
- Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:$2x^2-6x + 3 = 0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $\sqrt3 x^2+10x-8\sqrt3=0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $x^2-2x+1=0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $3x^2+2\sqrt5 x-5=0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $2x^2-2\sqrt2 x+1=0$
- State whether the following quadratic equations have two distinct real roots. Justify your answer.\( (x+4)^{2}-8 x=0 \)
- State whether the following quadratic equations have two distinct real roots. Justify your answer.\( x^{2}-3 x+4=0 \)
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $2x^2+5\sqrt3 x+6=0$
- In the following, determine whether the given quadratic equations have real roots and if so, find the roots: $\sqrt2 x^2+7x+5\sqrt2=0$
