# Find whether the following equations have real roots. If real roots exist, find them.$-2 x^{2}+3 x+2=0$

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

Given:

Given quadratic equation is $-2 x^{2}+3 x+2=0$

To do:

We have to determine whether the given quadratic equation has real roots.

Solution:

Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,

$a=-2, b=3$ and $c=2$.

The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is

$D=b^2-4ac$.

Therefore,

$D=(3)^2-4(-2)(2)$

$=9+16$

$=25$.

As $D>0$, the given quadratic equation has two distinct real roots.

This implies,

$x=\frac{-b\pm \sqrt{D}}{2a}$

$x=\frac{-3 \pm \sqrt{25}}{2(-2)}$

$x=\frac{-3 \pm 5}{-4}$

$x=\frac{-3+5}{-4}$ or $x= \frac{-3-5}{-4}$

$x=\frac{2}{-4}$ or $x=\frac{-8}{-4}$

$x=-\frac{1}{2}$ or $x=2$

The roots of the given quadratic equation are $-\frac{1}{2}$ and $2$.

Updated on 10-Oct-2022 13:27:26