- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find whether the following equations have real roots. If real roots exist, find them.
$ \frac{1}{2 x-3}+\frac{1}{x-5}=1, x ≠\frac{3}{2}, 5 $
Given:
Given quadratic equation is \( \frac{1}{2 x-3}+\frac{1}{x-5}=1, x ≠ \frac{3}{2}, 5 \).
To do:
We have to determine whether the given quadratic equation has real roots.
Solution:
$\frac{1}{2 x-3}+\frac{1}{x-5}=1$
$\frac{x-5+2 x-3}{(2 x-3)(x-5)}=1$
$\frac{3 x-8}{2 x^{2}-3x-10 x+15}=1$
$\frac{3 x-8}{2 x^{2}-13x+15}=1$
$3 x-8 =2 x^{2}-13 x+15$
$2 x^{2}-13 x-3 x+15+8 =0$
$2 x^{2}-16x+23=0$
Comparing the above quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=2, b=-16$ and $c=23$.
The discriminant of the standard form of the quadratic equation $ax^2+bx+c=0$ is
$D=b^2-4ac$.
Therefore,
$D=(-16)^2-4(2)(23)$
$=256-184$
$=72$
As $D>0$, the given quadratic equation has two distinct real roots.
This implies,
$x=\frac{-b\pm \sqrt{D}}{2a}$
$x=\frac{-(-16) \pm \sqrt{72}}{2(2)}$
$x=\frac{16 \pm 6\sqrt{2}}{4}$
$x=\frac{2(8+3\sqrt{2})}{4}$ or $x= \frac{2(8-3\sqrt{2})}{4}$
$x=\frac{8+3\sqrt{2}}{2}$ or $x=\frac{8-3\sqrt{2}}{2}$
The roots of the given quadratic equation are $\frac{8+3\sqrt{2}}{2}$ and $\frac{8-3\sqrt{2}}{2}$.  
- Related Articles
- Find whether the following equations have real roots. If real roots exist, find them.\( -2 x^{2}+3 x+2=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( 5 x^{2}-2 x-10=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( 8 x^{2}+2 x-3=0 \)
- Find whether the following equations have real roots. If real roots exist, find them.\( x^{2}+5 \sqrt{5} x-70=0 \)
- State whether the following quadratic equations have two distinct real roots. Justify your answer.\( \sqrt{2} x^{2}-\frac{3}{\sqrt{2}} x+\frac{1}{\sqrt{2}}=0 \)
- Find the value of $x$$\frac{x+2}{2}- \frac{x+1}{5}=\frac{x-3}{4}-1$
- If $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$, find the value of $x$.
- Determine the nature of the roots of the following quadratic equations: $\frac{3}{5}x^2 - \frac{2}{3}x + 1 = 0$
- Solve: \( \frac{x+5}{2}=1+\frac{2 x-1}{3} \).
- If \( x^{4}+\frac{1}{x^{4}}=194 \), find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \)
- If \( x+\frac{1}{x}=5 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=5 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
