# Find the equivalent fraction of $\frac{3}{5}$ having(a) denominator 20 (b) numerator 9(c) denominator 30 (d) numerator 27

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

To do:

We have to find the equivalent fraction of $\frac{3}{5}$ having

(a) denominator 20

(b) numerator 9

(c) denominator 30

(d) numerator 27

Solution:

Equivalent fractions:

Equivalent fractions are the fractions that have different numerators and denominators but are equal to the same value.

Therefore,

(a) $\frac{3}{5}$

3 is in the numerator, multiply 4 in both numerator and denominator to get 20($5\times4=20$) as denominator.

$\frac{3 \times 4}{5\times 4}=\frac{12}{20}$

Therefore, the equivalent fraction of $\frac{3}{5}$ is $\frac {12}{20}$.

(b) $\frac{3}{5}$

3 is in the numerator, multiply 3 in both numerator and denominator to get 9($3\times3=9$) as numerator.

$\frac{3 \times 3}{5\times 3}=\frac{9}{15}$

Therefore, the equivalent fraction of $\frac{3}{5}$ is $\frac {9}{15}$.

(c) $\frac{3}{5}$

3 is in the numerator, multiply 6 in both numerator and denominator to get 30($5\times6=30$) as denominator.

$\frac{3 \times 6}{5\times 6}=\frac{18}{30}$

Therefore, the equivalent fraction of $\frac{3}{5}$ is $\frac {18}{30}$.

(d) $\frac{3}{5}$

3 is in the numerator, multiply 9 in both numerator and denominator to get 27($3\times9=27$) as numerator.

$\frac{3 \times 9}{5\times 9}=\frac{27}{45}$

Therefore, the equivalent fraction of $\frac{3}{5}$ is $\frac {27}{45}$.

Updated on 10-Oct-2022 13:32:55