C++ Program to Perform Sorting Using B-Tree

C++Server Side ProgrammingProgramming

Here we will see how to get the sorted sequence using B-Tree. The B-tree is n-ary tree. To get the sorted sequences, we can create a B-tree, then add the numbers into it. Here the B-tree can hold maximum 5 nodes. If number of nodes increases, split the node and form new level. As the nodes are holding few number of elements like 5 (at most), we are using Bubble sorting techniques to sort them. as the number of elements is very low, then it will not affect too much on its performance.

After traversing the tree, we will get all of the values of different nodes. These elements will be sorted in non-decreasing order.

Algorithm

traverse(p)

Input :The Tree node p
Output : The traversal sequence of tree

Begin
   for i in range 0 to n-1, do
      if p is not a leaf node, then
         traverse(child of p at position i)
      end if
      print the data at position i
      done
      if p is not a leaf node, then
         traverse(child of p at position i)
      end if
End

sort(a, n)

Input Take the array a, which will be sorted, the number of elements in that array, which is n

Output: The sorted array

Begin
   for i in range 0 to n-1, do
      for j in range 0 to n-1, do
         if a[i] > a[j], then
            swap a[i] and a[j]
         end if
      done
   done
End

split_node(x, i):

Input : The node x to be splitted, i will be (-1) for leaf node, otherwise some positive value

Output : The middle element of Node after splitting

Begin
   Create a node np3, and mark it as leaf node
   if i is -1, then
      mid := Data from position 2 of x
      Set the data at position 2 of x to 0
      Reduce the number of data in x by 1
      create a new node called np1, and mark it as non-leaf node
      mark x as leaf node
      Insert all of the nodes of x from position 3 to 5 into np3
      Also insert all of the child reference of x from position 3 to 5 into np3
      Remove the inserted elements from the node x
      insert mid into the first position of np1
      make x as left child and np3 as right child of np1
      increase the element count of np1, and make this as root.
   else
      y := the subtree at location i
      mid := data from position 2 of y
      Set the data at position 2 of y to 0
      Reduce the number of data in y by 1
      Insert all of the nodes of y from position 3 to 5 into np3
      increase the element count of np3, and remove inserted elements from y
      add y child at position i, and add np3 at position i+1
   end if
End

insert(a):

Input : An element a, which will be inserted.

Output: The updated B-Tree

Begin
   x := root
   if x is null, then
      create a root node and take root into x
   else
      if x is leaf node, and has 5 elements, then
         temp_node := split_child(x, -1)
         x := root
         i := find correct position to insert a
         x := child of x at position i
      else
         while x is not a leaf node, do
         i := find correct position to insert a
         if child of x at position i, has 5 elements, then
            temp_node := split_child(x, i)
            add temp_node data at position x->n of x
         else
            x := child of x at position i
         end if
         done
      end if
   end if
   add a into x at position x->n
   sort elements of x
End

Example Code

#include<iostream>
using namespace std;
struct BTreeNode{ //create a node structure of a B-tree
   int *data;
   BTreeNode **child_ptr;
   bool leaf;
   int n;
}*root = NULL, *np = NULL, *x = NULL;
BTreeNode * getNode(){
   int i;
   np = new BTreeNode;
   np->data = new int[5]; //set five data fiels and 6 link field
   np->child_ptr = new BTreeNode *[6];
   np->leaf = true; //initially the node is a leaf
   np->n = 0;
   for (i = 0; i < 6; i++) {
      np->child_ptr[i] = NULL; //initialize all pointer to null
   }
   return np;
}
void traverse(BTreeNode *p) {
   cout<<endl;
   int i;
   for (i = 0; i < p->n; i++) { //recursively traverse the entire b-tree
      if (p->leaf == false){
         traverse(p->child_ptr[i]);
      }
      cout << " " << p->data[i];
   }
   if (p->leaf == false) {
      traverse(p->child_ptr[i]);
   }
   cout<<endl;
}
void sort(int *p, int n) {
   for (int i = 0; i < n; i++) {
      for (int j = i; j <= n; j++) {
         if (p[i] > p[j]){
            swap(p[i], p[j]);
         }
      }
   }
}
int split_child(BTreeNode *x, int i){ //split the node into three nodes, one root and two children
   int mid;
   BTreeNode *np1, *np3, *y;
   np3 = getNode(); //create a new leaf node called np3
   np3->leaf = true;
   if (i == -1) {
      mid = x->data[2]; //get the middle element
      x->data[2] = 0;
      x->n--;
      np1 = getNode();
      np1->leaf = false;
      x->leaf = true;
      for (int j = 3; j < 5; j++) {
         np3->data[j - 3] = x->data[j];
         np3->child_ptr[j - 3] = x->child_ptr[j];
         np3->n++;
         x->data[j] = 0;
         x->n--;
      }
      for (int j = 0; j < 6; j++) {
         x->child_ptr[j] = NULL;
      }
      np1->data[0] = mid;
      np1->child_ptr[np1->n] = x;
      np1->child_ptr[np1->n + 1] = np3;
      np1->n++;
      root = np1;
   } else {
      y = x->child_ptr[i];
      mid = y->data[2];
      y->data[2] = 0;
      y->n--;
      for (int j = 3; j < 5; j++) {
         np3->data[j - 3] = y->data[j];
         np3->n++;
         y->data[j] = 0;
         y->n--;
      }
      x->child_ptr[i] = y;
      x->child_ptr[i + 1] = np3;
   }
   return mid;
}
void insert(int a){ //insert into BTree
   int i, tmp_node;
   x = root;
   if (x == NULL) {
      root = getNode();
      x = root;
   } else {
      if (x->leaf == true && x->n == 5){ //when the node is a leaf node and has 5 data
         tmp_node = split_child(x, -1); //make a new level by spliting the node
         x = root;
         for (i = 0; i < (x->n); i++) {
            if ((a > x->data[i]) && (a < x->data[i + 1])) {
               i++;
               break;
            } else if (a < x->data[0]) {
               break;
            } else {
               continue;
            }
         }
         x = x->child_ptr[i];
      } else {
         while (x->leaf == false) {
            for (i = 0; i < (x->n); i++) {
               if ((a > x->data[i]) && (a < x->data[i + 1])) {
                  i++;
                  break;
               } else if (a < x->data[0]) {
                  break;
               } else {
                  continue;
               }
            }
            if ((x->child_ptr[i])->n == 5) {
               tmp_node = split_child(x, i);
               x->data[x->n] = tmp_node;
               x->n++;
               continue;
            } else {
               x = x->child_ptr[i];
            }
         }
      }
   }
   x->data[x->n] = a;
   sort(x->data, x->n);
   x->n++;
}
int main() {
   int i, n, t;
   cout<<"enter the no of elements to be inserted\n";
   cin>>n;
   for(i = 0; i < n; i++) {
      cout<<"enter the element\n";
      cin>>t;
      insert(t);
   }
   cout<<"traversal of constructed tree\n";
   traverse(root);
}

Output

enter the no of elements to be inserted
8
enter the element
54
enter the element
23
enter the element
98
enter the element
52
enter the element
10
enter the element
23
enter the element
47
enter the element
84
traversal of constructed tree
10 23 23 47
52
54 84 98
raja
Published on 28-May-2019 14:53:38
Advertisements