- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Choose the correct answer from the given four options in the following questions:
Which of the following equations has two distinct real roots?
(A) $ 2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0 $
(B) $ x^{2}+x-5=0 $
(C) $ x^{2}+3 x+2 \sqrt{2}=0 $
(D) $ 5 x^{2}-3 x+1=0 $
To do:
We have to find the correct answer.
Solution:
$2 x^{2}-3 \sqrt{2} x+\frac{9}{4}=0$
Comparing with $a x^{2}+b x+c=0$, we get,
$a=2, b=-3 \sqrt{2}$ and $c=\frac{9}{4}$
$D=b^{2}-4 a c$
$=(-3 \sqrt{2})^{2}-4(2)(\frac{9}{4})$
$=18-18$
$=0$
So, the equation has real and equal roots.
$x^{2}+x-5=0$
Comparing with $a x^{2}+b x+c=0$, we get,
$a=1, b=1$ and $c=-5$
$D=b^{2}-4 a c$
$=(1)^{2}-4(1)(-5)$
$=1+20$
$=21>0$
So, $x^{2}+x-5=0$ has two distinct real roots.
$x^{2}+3 x+2 \sqrt{2}=0$
Comparing with $a x^{2}+b x+c=0$
$a=1, b=3 $ and $c=2 \sqrt{2}$
$D=b^{2}-4 a c$
$=(3)^{2}-4(1)(2 \sqrt{2})$
$=9-8 \sqrt{2}<0$
So, the roots of the equation $x^{2}+3 x+2 \sqrt{2}=0$ are not real.
$5 x^{2}-3 x+1=0$
Comparing with $a x^{2}+b x+c=0$
$a=5, b=-3, c=1$
$D=b^{2}-4 a c$
$=(-3)^{2}-4(5)(1)$
$=9-20$
$=-11<0$
So, the roots of the equation $5 x^{2}-3 x+1=0$ are not real.