Signals and Systems Articles - Page 6 of 4

Final Value Theorem of Z-Transform

Manish Kumar Saini
Updated on 29-Jan-2022 06:12:21

22K+ Views

Z-TransformThe Z-transform is a mathematical tool which is used to convert the difference equations in discrete time domain into the algebraic equations in z-domain. Mathematically, if $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a discrete time function, then its Z-transform is defined as, $$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$Final Value Theorem of Z-TransformThe final value theorem of Z-transform enables us to calculate the steady state value of a sequence $\mathit{x}\mathrm{\left(\mathit{n}\right)}$, i.e., $\mathit{x}\mathrm{\left(\mathit{\infty}\right)}$ directly from its Z-transform, without the need for finding its inverse Z-transform.Statement - If $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a causal sequence, then the final value theorem of Z-transform states that if, $$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$And if the Z-transform X(z) has no poles outside ... Read More

Autocorrelation Function of a Signal

Manish Kumar Saini
Updated on 07-Jan-2022 11:10:18

1K+ Views

Autocorrelation FunctionThe autocorrelation function defines the measure of similarity or coherence between a signal and its time delayed version. The autocorrelation function of a real energy signal $\mathit{x}\mathrm{(\mathit{t})}$ is given by, $$\mathit{R}\mathrm{(\mathit{\tau})} \:\mathrm{=}\: \int_{-\infty}^{\infty}\mathit{x\mathrm(\mathit{t})}\:\mathit{x}\mathrm{(\mathit{t-\tau})}\:\mathit{dt}$$Energy Spectral Density (ESD) FunctionThe distribution of the energy of a signal in the frequency domain is called the energy spectral density.The ESD function of a signal is given by, $$\mathit{\psi}\mathrm{(\mathit{\omega})}\: \mathrm{=}\: \mathrm{|\mathit{X}\mathrm{(\mathit{\omega})}|}^\mathrm{2} \:\mathrm{=}\: \mathit{X}\mathrm{(\mathit{\omega})} \mathit{X}\mathrm{(\mathit{-\omega})}$$Autocorrelation TheoremStatement − The autocorrelation theorem states that the autocorrelation function $\mathit{R}\mathrm{(\mathrm{\tau})}$ and the ESD (Energy Spectral Density) function $\mathit{\psi}\mathrm{(\mathit{\omega})}$ of an energy signal $\mathit{x}\mathrm{(\mathit{t})}$ form a Fourier transform pair, i.e., $$\mathit{R}\mathrm{(\mathit{\tau})} ... Read More

Signals and Systems – Multiplication Property of Fourier Transform

Manish Kumar Saini
Updated on 17-Dec-2021 07:20:33

12K+ Views

For a continuous-time function $\mathit{x(t)}$, the Fourier transform of $\mathit{x(t)}$ can be defined as$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\mathrm{=}}\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}}$$And the inverse Fourier transform is defined as, $$\mathrm{\mathit{F^{\mathrm{-1}}\left [ X\left ( \omega \right ) \right ]\mathrm{\mathrm{=}}x\left ( t \right )\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left ( \omega \right )e^{j\omega t}d\omega }}$$Multiplication Property of Fourier TransformStatement – The multiplication property of continuous-time Fourier transform (CTFT) states that the multiplication of two functions in time domain is equivalent to the convolution of their spectra in the frequency domain. The multiplication property is also called frequency convolution theorem of Fourier ... Read More

Properties of Convolution in Signals and Systems

Manish Kumar Saini
Updated on 08-Nov-2023 00:19:38

43K+ Views

ConvolutionConvolution is a mathematical tool for combining two signals to produce a third signal. In other words, the convolution can be defined as a mathematical operation that is used to express the relation between input and output an LTI system.Consider two signals $\mathit{x_{\mathrm{1}}\left( t\right )}$ and $\mathit{x_{\mathrm{2}}\left( t\right )}$. Then, the convolution of these two signals is defined as$$\mathrm{ \mathit{\mathit{y\left(t\right)=x_{\mathrm{1}}\left({t}\right)*x_{\mathrm{2}}\left({t}\right)\mathrm{=}\int_{-\infty }^{\infty }x_{\mathrm{1}}\left(\tau\right)x_{\mathrm{2}}\left(t-\tau\right)\:d\tau=\int_{-\infty }^{\infty }x_{\mathrm{2}}\left(\tau \right)x_{\mathrm{1}}\left(t-\tau\right)\:d\tau }}}$$Properties of ConvolutionContinuous-time convolution has basic and important properties, which are as follows −Commutative Property of Convolution − The commutative property of convolution states that the order in which we convolve two signals does not ... Read More

Expressions for the Trigonometric Fourier Series Coefficients

Manish Kumar Saini
Updated on 08-Dec-2021 07:04:21

3K+ Views

The infinite series of sine and cosine terms of frequencies $0, \omega_{0}, 2\omega_{0}, 3\omega_{0}, ....k\omega_{0}$is known as trigonometric Fourier series and can written as, $$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$Here, the constant $a_{0}, a_{n}$ and $b_{n}$ are called trigonometric Fourier series coefficients.Evaluation of a0To evaluate the coefficient $a_{0}$, we shall integrate the equation (1) on both sides over one period, i.e., $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}\int_{t_{0}}^{(t_{0}+T)}dt+\int_{t_{0}}^{(t_{0}+T)}\left(\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t\right)dt}$$$$\mathrm{\Rightarrow\:\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T+\sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt+\sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt… (2)}$$As we know that the net areas of sinusoids over complete periods are zero for any non-zero integer n and any time $t_{0}$. Therefore, $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt=0\:\:and\:\:\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt=0}$$Hence, from equation (2), we get, $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T}$$$$\mathrm{\therefore\:a_{0}=\frac{1}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt… (3)}$$Using equation (3), ... Read More

Fourier Series Representation of Periodic Signals

Manish Kumar Saini
Updated on 08-Dec-2021 06:55:39

8K+ Views

What is Fourier Series?In the domain of engineering, most of the phenomena are periodic in nature such as the alternating current and voltage. These periodic functions could be analysed by resolving into their constituent components by a process called the Fourier series.Therefore, the Fourier series can be defined as under −“The representation of periodic signals over a certain interval of time in terms of linear combination of orthogonal functions (i.e., sine and cosine functions) is known as Fourier series.”The Fourier series is applicable only to the periodic signals i.e. the signals which repeat itself periodically over an interval from $(-\infty\:to\:\infty)$and ... Read More

Relation between Trigonometric & Exponential Fourier Series

Manish Kumar Saini
Updated on 03-Dec-2021 12:42:36

13K+ Views

Trigonometric Fourier SeriesA periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions. If these orthogonal functions are the trigonometric functions, then it is known as trigonometric Fourier series.Mathematically, the standard trigonometric Fourier series expansion of a periodic signal is, $$\mathrm{x(t)=a_{0}+ \sum_{n=1}^{\infty}a_{n}\:cos\:\omega_{0}nt+b_{n}\:sin\:\omega_{0}nt\:\:… (1)}$$Exponential Fourier SeriesA periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions, if these orthogonal functions are the exponential functions, then it is known as exponential Fourier series.Mathematically, the standard exponential Fourier series expansion for a periodic ... Read More

Advertisements