Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Signals and Systems Articles - Page 5 of 4
22K+ Views
Z-TransformThe Z-transform is a mathematical tool which is used to convert the difference equations in discrete time domain into the algebraic equations in z-domain. Mathematically, if $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a discrete time function, then its Z-transform is defined as, $$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$Final Value Theorem of Z-TransformThe final value theorem of Z-transform enables us to calculate the steady state value of a sequence $\mathit{x}\mathrm{\left(\mathit{n}\right)}$, i.e., $\mathit{x}\mathrm{\left(\mathit{\infty}\right)}$ directly from its Z-transform, without the need for finding its inverse Z-transform.Statement - If $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a causal sequence, then the final value theorem of Z-transform states that if, $$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$And if the Z-transform X(z) has no poles outside ... Read More
1K+ Views
Autocorrelation FunctionThe autocorrelation function defines the measure of similarity or coherence between a signal and its time delayed version. The autocorrelation function of a real energy signal $\mathit{x}\mathrm{(\mathit{t})}$ is given by, $$\mathit{R}\mathrm{(\mathit{\tau})} \:\mathrm{=}\: \int_{-\infty}^{\infty}\mathit{x\mathrm(\mathit{t})}\:\mathit{x}\mathrm{(\mathit{t-\tau})}\:\mathit{dt}$$Energy Spectral Density (ESD) FunctionThe distribution of the energy of a signal in the frequency domain is called the energy spectral density.The ESD function of a signal is given by, $$\mathit{\psi}\mathrm{(\mathit{\omega})}\: \mathrm{=}\: \mathrm{|\mathit{X}\mathrm{(\mathit{\omega})}|}^\mathrm{2} \:\mathrm{=}\: \mathit{X}\mathrm{(\mathit{\omega})} \mathit{X}\mathrm{(\mathit{-\omega})}$$Autocorrelation TheoremStatement − The autocorrelation theorem states that the autocorrelation function $\mathit{R}\mathrm{(\mathrm{\tau})}$ and the ESD (Energy Spectral Density) function $\mathit{\psi}\mathrm{(\mathit{\omega})}$ of an energy signal $\mathit{x}\mathrm{(\mathit{t})}$ form a Fourier transform pair, i.e., $$\mathit{R}\mathrm{(\mathit{\tau})} ... Read More
12K+ Views
For a continuous-time function $\mathit{x(t)}$, the Fourier transform of $\mathit{x(t)}$ can be defined as$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\mathrm{=}}\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}}$$And the inverse Fourier transform is defined as, $$\mathrm{\mathit{F^{\mathrm{-1}}\left [ X\left ( \omega \right ) \right ]\mathrm{\mathrm{=}}x\left ( t \right )\mathrm{\mathrm{=}}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left ( \omega \right )e^{j\omega t}d\omega }}$$Multiplication Property of Fourier TransformStatement – The multiplication property of continuous-time Fourier transform (CTFT) states that the multiplication of two functions in time domain is equivalent to the convolution of their spectra in the frequency domain. The multiplication property is also called frequency convolution theorem of Fourier ... Read More
43K+ Views
ConvolutionConvolution is a mathematical tool for combining two signals to produce a third signal. In other words, the convolution can be defined as a mathematical operation that is used to express the relation between input and output an LTI system.Consider two signals $\mathit{x_{\mathrm{1}}\left( t\right )}$ and $\mathit{x_{\mathrm{2}}\left( t\right )}$. Then, the convolution of these two signals is defined as$$\mathrm{ \mathit{\mathit{y\left(t\right)=x_{\mathrm{1}}\left({t}\right)*x_{\mathrm{2}}\left({t}\right)\mathrm{=}\int_{-\infty }^{\infty }x_{\mathrm{1}}\left(\tau\right)x_{\mathrm{2}}\left(t-\tau\right)\:d\tau=\int_{-\infty }^{\infty }x_{\mathrm{2}}\left(\tau \right)x_{\mathrm{1}}\left(t-\tau\right)\:d\tau }}}$$Properties of ConvolutionContinuous-time convolution has basic and important properties, which are as follows −Commutative Property of Convolution − The commutative property of convolution states that the order in which we convolve two signals does not ... Read More
3K+ Views
The infinite series of sine and cosine terms of frequencies $0, \omega_{0}, 2\omega_{0}, 3\omega_{0}, ....k\omega_{0}$is known as trigonometric Fourier series and can written as, $$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t… (1)}$$Here, the constant $a_{0}, a_{n}$ and $b_{n}$ are called trigonometric Fourier series coefficients.Evaluation of a0To evaluate the coefficient $a_{0}$, we shall integrate the equation (1) on both sides over one period, i.e., $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}\int_{t_{0}}^{(t_{0}+T)}dt+\int_{t_{0}}^{(t_{0}+T)}\left(\sum_{n=1}^{\infty}a_{n}\:cos\:n\omega_{0} t+b_{n}\:sin\:n\omega_{0} t\right)dt}$$$$\mathrm{\Rightarrow\:\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T+\sum_{n=1}^{\infty}a_{n}\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt+\sum_{n=1}^{\infty}b_{n}\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt… (2)}$$As we know that the net areas of sinusoids over complete periods are zero for any non-zero integer n and any time $t_{0}$. Therefore, $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}cos\:n\omega_{0} t\:dt=0\:\:and\:\:\int_{t_{0}}^{(t_{0}+T)}sin\:n\omega_{0} t\:dt=0}$$Hence, from equation (2), we get, $$\mathrm{\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt=a_{0}T}$$$$\mathrm{\therefore\:a_{0}=\frac{1}{T}\int_{t_{0}}^{(t_{0}+T)}x(t)\:dt… (3)}$$Using equation (3), ... Read More
8K+ Views
What is Fourier Series?In the domain of engineering, most of the phenomena are periodic in nature such as the alternating current and voltage. These periodic functions could be analysed by resolving into their constituent components by a process called the Fourier series.Therefore, the Fourier series can be defined as under −“The representation of periodic signals over a certain interval of time in terms of linear combination of orthogonal functions (i.e., sine and cosine functions) is known as Fourier series.”The Fourier series is applicable only to the periodic signals i.e. the signals which repeat itself periodically over an interval from $(-\infty\:to\:\infty)$and ... Read More
13K+ Views
Trigonometric Fourier SeriesA periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions. If these orthogonal functions are the trigonometric functions, then it is known as trigonometric Fourier series.Mathematically, the standard trigonometric Fourier series expansion of a periodic signal is, $$\mathrm{x(t)=a_{0}+ \sum_{n=1}^{\infty}a_{n}\:cos\:\omega_{0}nt+b_{n}\:sin\:\omega_{0}nt\:\:… (1)}$$Exponential Fourier SeriesA periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions, if these orthogonal functions are the exponential functions, then it is known as exponential Fourier series.Mathematically, the standard exponential Fourier series expansion for a periodic ... Read More