Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Server Side Programming Articles - Page 657 of 2650
206 Views
To Accumulate the result of applying the operator to all elements, use the numpy.accumulate() method in Python Numpy. For a multi-dimensional array, accumulate is applied along only one axisThe numpy.ufunc has functions that operate element by element on whole arrays. The ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility.A universal function (or ufunc for short) is a function that operates on ndarrays in an element-byelement fashion, supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” wrapper for a function that takes a fixed number of ... Read More
747 Views
To Accumulate the result of applying the operator to all elements, use the numpy.accumulate() method in Python Numpy. We have shown examples of add and multiple. The add.accumulate() is equivalent to np.cumsum().The numpy.ufunc has functions that operate element by element on whole arrays. The ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility.A universal function (or ufunc for short) is a function that operates on ndarrays in an element-byelement fashion, supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” wrapper for a function that takes a ... Read More
198 Views
To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy. The "to_end" parameter sets the array of number(s) to append at the end of the returned differences.This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.ediff1d for details.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, ... Read More
805 Views
To set the fill value of a masked array, use the ma.MaskedArray.set_fill_value() method in Python Numpy. The filling value of the masked array is a scalar.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays ... Read More
164 Views
To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy. The "to_end" parameter sets the number(s) to append at the end of the returned differences.This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.ediff1d for details.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the ... Read More
180 Views
A new array from the set of choices is constructed using the np.ma.choose() method. The mode parameter is set to 'clip'. If mode='clip', values greater than n-1 are mapped to n-1; and then the new array is constructed.Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the choice arrays. Where a value in index is i, the new array will have the value that choices[i] contains in the same place.The choices parameter is the choice arrays. The index array and all of the choices should be ... Read More
212 Views
To return the inner product of two masked arrays with different shapes, use the ma.inner() method in Python Numpy.Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.The out parameter suggests, if both the arrays are scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1]).A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines ... Read More
172 Views
To return the inner product of two masked arrays, use the ma.inner() method in Python Numpy. The out parameter suggests, if both the arrays are scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1]).A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as ... Read More
189 Views
To return the dot product of two masked arrays, use the ma.dot() method in Python Numpy. The "strict" parameter sets whether masked data is propagated (True) or set to 0 (False) for the computation.This function is the equivalent of numpy.dot that takes masked values into account. The strict and out are in different position than in the method version. In order to maintain compatibility with the corresponding method, it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory.The strict parameter sets whether masked data are propagated (True) or set to 0 ... Read More
172 Views
To calculate the n-th discrete difference along the given axis, use the MaskedArray.diff() method in Python Numpy. The first difference is given by out[i] = a[i+1] - a[i] along the given axis, higher differences are calculated by using diff recursively −The axis is set using the "axis" parameterThe axis is the axis along which the difference is taken, default is the last axis.The function returns the n-th differences. The shape of the output is the same as a except along axis where the dimension is smaller by n. The type of the output is the same as the type of ... Read More