Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Server Side Programming Articles - Page 545 of 2650
2K+ Views
To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy. The 1st parameter, x is an input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned.The 2nd parameter, ord is the order of the norm. The inf means numpy’s inf object. The default is None. The "fro" set as a parameter is the Frobenius norm. Both the Frobenius and nuclear norm orders are only defined for matricesStepsAt first, import the required ... Read More
1K+ Views
The pandas.Series.at attribute is used to access the single labeled element from a Series object and It is very similar to the loc in pandas. The “at” attribute takes label data to get or set the series value in that particular label position.It will return a single value based on the index label, and it also uploads the data at that particular label position.Example 1import pandas as pd # create a sample series s = pd.Series({'A':12, 'B':78, "C":56}) print(s) print(s.at['A'])ExplanationIn this following example, we have created a series using a python dictionary and the index will be ... Read More
222 Views
To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy. The 1st parameter, x is an input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned. The 2nd parameter, ord is the order of the norm. The inf means numpy’s inf object. The default is None.The 3rd parameter axis, if an integer, specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies ... Read More
266 Views
To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy. The 1st parameter, x is an input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned.The 2nd parameter, ord is the order of the norm. The inf means numpy’s inf object. The default is None. The 3rd parameter axis, if an integer, specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies ... Read More
251 Views
To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy. The 1st parameter, x is an input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned. The 2nd parameter, ord is the order of the norm. The inf means numpy’s inf object. The default is None.The 3rd parameter axis, if an integer, specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies ... Read More
269 Views
To return the Norm of the matrix or vector in Linear Algebra, use the LA.norm() method in Python Numpy. The 1st parameter, x is an input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned. The 2nd parameter, ord is the order of the norm. The inf means numpy’s inf object. The default is None.The 3rd parameter axis, if an integer, specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies ... Read More
521 Views
The “.array” is one of the pandas series attributes. it will return a pandas ExtensionArray with the values stored in the series. The “.array” is used to get a zero-copy reference to the underlying data.The resultant array is not like a NumPy array it is an ExtensionArray, and it has different array types based on the data present in the series (dtype).Example 1import pandas as pd # create pandas series with numerical values s1 = pd.Series([1, 2, 3, 4]) print(s1) print(s1.array)ExplanationThe “s1” is the pandas series object which is created by using integer values with length 4. ... Read More
154 Views
To integrate a Legendre series, use the polynomial.legendre.legint() method in Python. The method returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of variable.The 1st parameter, c is an array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is an order of integration, must be positive. (Default: ... Read More
173 Views
To integrate a Legendre series, use the polynomial.legendre.legint() method in Python. The method returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of variable.The 1st parameter, c is an array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is an order of integration, must be positive. (Default: ... Read More
2K+ Views
The pandas Series align method is used to align two pandas series objects on basics of the same row and/or column configuration, which is done by specifying the parameters like join, axis, etc.Instead of combining the two series of objects, the pandas series align method aligns them in a specific order. This method takes 10 parameters which are “other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None”. Out of these parameters other, join and axis parameters are very important. Based on these parameters the output series object alignment depends.Example 1import pandas as pd s1 = pd.Series([8, 4, 2, 1], ... Read More