
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 10476 Articles for Python

19K+ Views
To create a 3D plot from a 3D numpy array, we can create a 3D array using numpy and extract the x, y, and z points.Create a new figure or activate an existing figure using figure() method.Add an '~.axes.Axes' to the figure as part of a subplot arrangement using add_subplot() method.Create a random data of size=(3, 3, 3).Extract x, y, and z data from the 3D array.Plot 3D scattered points on the created axisTo display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax ... Read More

786 Views
To animate a contour plot in matplotlib in Python, we can take the following steps−Create a random data of shape 10☓10 dimension.Create a figure and a set of subplots using subplots() method.Makes an animation by repeatedly calling a function *func* using FuncAnimation() class.To update the contour value in a function, we can define a method animate that can be used in FuncAnimation() class.To display the figure, use show() method.Exampleimport numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.randn(800).reshape(10, 10, 8) fig, ax = plt.subplots() def animate(i): ax.clear() ax.contourf(data[:, ... Read More

2K+ Views
To position and align a matplotlib figure legend, we can take the following steps−Plot line1 and line2 using plot() method.Place a legend on the figure. Use bbox_to_anchor to set the position and make horizontal alignment of the legend elements.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True line1, = plt.plot([1, 5, 1, 7], linewidth=0.7) line2, = plt.plot([5, 1, 7, 1], linewidth=2.0) plt.legend([line1, line2], ["line1", "line2"], bbox_to_anchor=(0.45, 1.0), ncol=2) plt.show()Output

3K+ Views
To convert numbers to a color scale in matplotlib, we can take the following steps.StepsCreate x, y and c data points using numpy.Convert the data points to Pandas dataframe.Create a new figure or activate an existing figure using subplots() method.Get the hot colormap.To linearly normalize the data, we can use Normalize() class.Plot the scatter points with x and y data points and linearly normalized colormap.Set the xticks for x data points.To make the colorbar, create a scalar mappable object.Use colorbar() method to make the colorbar.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt, colors import numpy as ... Read More

13K+ Views
To export an SVG file from a matplotlib figure, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots.Create random x and y data points using numpy.Plot x and y data points using plot() method.Save the .svg format file using savefig() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax = plt.subplots() x = np.random.rand(10) y = np.random.rand(10) ax.plot(x, y, ls='dotted', linewidth=2, color='red') plt.savefig("myimg.svg")OutputWhen we execute this code, it will create an SVG file called "myimg.svg" and ... Read More

742 Views
To plot a time series in Python using matplotlib, we can take the following steps −Create x and y points using numpy.Plot the created x and y points using plot() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import datetime import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.array([datetime.datetime(2021, 1, 1, i, 0) for i in range(24)]) y = np.random.randint(100, size=x.shape) plt.plot(x, y) plt.show()Output

298 Views
To give sns.clustermap a dataset, we can take the following steps −Set multiple theme parameters in one step.Load an example dataset from the online repository (requires Internet).Return item and drop from the frame. Raise KeyError if not found, using pop() method.Plot a matrix dataset as a hierarchically-clustered heatmap using clustermap() method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt import seaborn as sns plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True sns.set_theme(color_codes=True) iris = sns.load_dataset("iris") species = iris.pop("species") g = sns.clustermap(iris) plt.show()OutputRead More

440 Views
To sharex when using subplot2grid, we can take the following steps −Create random data, t, x, y1 and y2 using numpy.Create a new figure or activate an existing figure using figure() method.Create a subplot at a specific location inside a regular grid with colspan=3 and rowspan=2.Create a subplot at a specific location inside a regular grid with colspan=3 and sharex=ax1 (step 3).Plot curve using t and y1 and y2 using plot() method.Adjust the padding between and around the subplots.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True t = np.arange(0.0, ... Read More

2K+ Views
To plot 3D graphs using Python, we can take the following steps −Create a new figure or activate an existing figure using figure() method.Get the 3D axes object.Make x, y, and z lists for data points.Add 3D scatter points using scatter3D() method, with x, y, and z data points with markersize=150 and marker=diamond.To display the figure, use show() method.Examplefrom mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = Axes3D(fig) x = [2, 4, 6, 3, 1] y = [1, 6, 8, 1, 3] z = [3, 4, 10, 3, 1] ax.scatter3D(x, y, ... Read More

6K+ Views
To add a text into a rectangle in matplotlib, we can add a label in annotate method at the center point of the rectangle.StepsCreate a figure or activate an existing figure using figure() method.Add a subplot arrangement in the current axis.To add a rectangle in the plot, use Rectangle() class to get the rectangle object.Add a rectangle patch on the plot.To add text label in the rectangle, we can get the center value of the rectangle, i.e., cx and cy.Use annotate() method to place text on the rectangle.Limit x and y axes to get a visible rectangle.To display the figure, use show() method.Examplefrom matplotlib ... Read More