Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python Articles - Page 591 of 1048
14K+ Views
To plot points on the surface of a sphere in Python, we can use plot_surface() method.StepsCreate a new figure or activate an existing figure using figure() method.Add a set of subplots using add_subplot() method with 3d projection.Initialize a variable, r.Get the theta value for spherical points and x, y, and z data points using numpy.Plot the surface using plot_surface() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = fig.add_subplot(projection='3d') r = 0.05 u, v = np.mgrid[0:2 * np.pi:30j, 0:np.pi:20j] x = np.cos(u) * ... Read More
19K+ Views
To create a 3D plot from a 3D numpy array, we can create a 3D array using numpy and extract the x, y, and z points.Create a new figure or activate an existing figure using figure() method.Add an '~.axes.Axes' to the figure as part of a subplot arrangement using add_subplot() method.Create a random data of size=(3, 3, 3).Extract x, y, and z data from the 3D array.Plot 3D scattered points on the created axisTo display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax ... Read More
839 Views
To animate a contour plot in matplotlib in Python, we can take the following steps−Create a random data of shape 10☓10 dimension.Create a figure and a set of subplots using subplots() method.Makes an animation by repeatedly calling a function *func* using FuncAnimation() class.To update the contour value in a function, we can define a method animate that can be used in FuncAnimation() class.To display the figure, use show() method.Exampleimport numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.randn(800).reshape(10, 10, 8) fig, ax = plt.subplots() def animate(i): ax.clear() ax.contourf(data[:, ... Read More
2K+ Views
To position and align a matplotlib figure legend, we can take the following steps−Plot line1 and line2 using plot() method.Place a legend on the figure. Use bbox_to_anchor to set the position and make horizontal alignment of the legend elements.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True line1, = plt.plot([1, 5, 1, 7], linewidth=0.7) line2, = plt.plot([5, 1, 7, 1], linewidth=2.0) plt.legend([line1, line2], ["line1", "line2"], bbox_to_anchor=(0.45, 1.0), ncol=2) plt.show()Output
3K+ Views
To convert numbers to a color scale in matplotlib, we can take the following steps.StepsCreate x, y and c data points using numpy.Convert the data points to Pandas dataframe.Create a new figure or activate an existing figure using subplots() method.Get the hot colormap.To linearly normalize the data, we can use Normalize() class.Plot the scatter points with x and y data points and linearly normalized colormap.Set the xticks for x data points.To make the colorbar, create a scalar mappable object.Use colorbar() method to make the colorbar.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt, colors import numpy as ... Read More
14K+ Views
To export an SVG file from a matplotlib figure, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots.Create random x and y data points using numpy.Plot x and y data points using plot() method.Save the .svg format file using savefig() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax = plt.subplots() x = np.random.rand(10) y = np.random.rand(10) ax.plot(x, y, ls='dotted', linewidth=2, color='red') plt.savefig("myimg.svg")OutputWhen we execute this code, it will create an SVG file called "myimg.svg" and ... Read More
789 Views
To plot a time series in Python using matplotlib, we can take the following steps −Create x and y points using numpy.Plot the created x and y points using plot() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import datetime import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.array([datetime.datetime(2021, 1, 1, i, 0) for i in range(24)]) y = np.random.randint(100, size=x.shape) plt.plot(x, y) plt.show()Output
321 Views
To give sns.clustermap a dataset, we can take the following steps −Set multiple theme parameters in one step.Load an example dataset from the online repository (requires Internet).Return item and drop from the frame. Raise KeyError if not found, using pop() method.Plot a matrix dataset as a hierarchically-clustered heatmap using clustermap() method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt import seaborn as sns plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True sns.set_theme(color_codes=True) iris = sns.load_dataset("iris") species = iris.pop("species") g = sns.clustermap(iris) plt.show()OutputRead More
463 Views
To sharex when using subplot2grid, we can take the following steps −Create random data, t, x, y1 and y2 using numpy.Create a new figure or activate an existing figure using figure() method.Create a subplot at a specific location inside a regular grid with colspan=3 and rowspan=2.Create a subplot at a specific location inside a regular grid with colspan=3 and sharex=ax1 (step 3).Plot curve using t and y1 and y2 using plot() method.Adjust the padding between and around the subplots.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True t = np.arange(0.0, ... Read More
2K+ Views
To plot 3D graphs using Python, we can take the following steps −Create a new figure or activate an existing figure using figure() method.Get the 3D axes object.Make x, y, and z lists for data points.Add 3D scatter points using scatter3D() method, with x, y, and z data points with markersize=150 and marker=diamond.To display the figure, use show() method.Examplefrom mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = Axes3D(fig) x = [2, 4, 6, 3, 1] y = [1, 6, 8, 1, 3] z = [3, 4, 10, 3, 1] ax.scatter3D(x, y, ... Read More