
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 10476 Articles for Python

220 Views
To fix the deprecation warning that comes while using a deprecated method, we can use warnings.filterwarnings("ignore") in the code.−Examplefrom matplotlib import pyplot as plt, pylab as pl import warnings plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True warnings.filterwarnings("ignore") pl.pause(0) plt.show()OutputProcess finished with exit code 0

966 Views
To plot customized legend symbols on a plot, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Inherit HandlerPatch class, override create artists method, add an elliptical patch to the plot, and return the patch handler.Plot a circle on the plot using Circle class.Add a circle patch on the current axis.Use legend() method to place the legend on the plot.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt, matplotlib.patches as mpatches from matplotlib.legend_handler import HandlerPatch plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True class HandlerEllipse(HandlerPatch): def create_artists(self, legend, ... Read More

2K+ Views
To plot a single line that continuously changes color, we can take the following steps−Set the figure size and adjust the padding between and around the subplots.Create random x and y data points using numpy.Create a figure and a set of subplots.Iterate the index in the range of 1 to 100.Plot x and y data points with random color in a loop.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np import random plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(1, 10, 100) y = np.sin(x) fig, ax = plt.subplots() for ... Read More

10K+ Views
To set the Matplotlib title in bold while using "Times New Roman", we can use fontweight="bold".StepsSet the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots.Create x and y data points using numpy.Plot x and y data points using scatter() method.Set the title of the plot using fontname="Times New Roman" and fontweight="bold"To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, font_manager as fm plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax = plt.subplots() x = np.random.rand(100) y = np.random.rand(100) ax.scatter(x, y, ... Read More

5K+ Views
To plot a 3D surface from x, y and z scatter data in Python, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure using figure() method.Add an axes to the figure as part of a subplot arrangement.Create x, y, X, Y and Z data points using numpy.Plot x, y and z data points using plot_surface() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ... Read More

422 Views
To get the (x, y) values of a line that is plotted by a contour plot, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a 3D contour plot using contour() method.Get the contour plot collections and get the paths.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True m = [[3, 2, 1, 0], [2, 4, 1, 0], [2, 4, 1, 3], [4, 3, 1, 3]] cs = plt.contour([3, 4, 2, 1], [5, 1, 2, 3], m) p1 = cs.collections[0].get_paths() for item in p1: print(item.vertices) plt.show()Output

726 Views
To animate a time-ordered sequence of Matplotlib plots, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure.Add an axes to the figure as part of a subplot arrangement.Return the first recurrence after the given datetime instance using after() method.Write an animate() method to animate. Display the data as an image, i.e., on a 2D regular raster.To display the figure, use show() method.Exampleimport numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True ... Read More

653 Views
To fill the area under a curve in Matplotlib python on log scale, we can take the following steps−Set the figure size and adjust the padding between and around the subplots.Create x, y1 and y2 data points using numpy.Plot x, y1 and y2 data points using plot() method.Fill the area between the two curves.Set the scale of the axes.Place a legend on the plot.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-1, 1, 100) y1 = np.sin(x) y2 = np.cos(x) ... Read More

128 Views
To force errorbars to render last with matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a new figure or activate an existing figure using figure() method.Get the current axis using gca() method.Plot the list of linesPlot y versus x as lines and/or markers with attached errorbars.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = plt.gca() [ax.plot(np.random.rand(10)) for j in range(10)] ax.errorbar(range(10), np.random.rand(10), yerr=.3 * np.random.rand(10)) plt.show()OutputRead More

257 Views
Matplotlib provides a number of colormaps, and others can be added using :func:'~matplotlib.cm.register_cmap'. This function documents the built-in colormaps, and will also return a list of all registered colormaps, if called.Examplefrom matplotlib import pyplot as plt cmaps = plt.colormaps() print("Possible color maps are: ") for item in cmaps: print(item)OutputAccent Accent_r Blues ... ... ... viridis_r winter winter_r