Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Programming Articles - Page 770 of 3363
587 Views
To reset the fill value of the ma, use the ma.MaskedArray.fill_value() method in Python Numpy and set it to None.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse ... Read More
769 Views
To get the fill value, use the ma.MaskedArray.get_fill_value() method in Python Numpy. The filling value of the masked array is a scalar. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array with int elements using the numpy.array() method −arr = np.array([[65, 68, 81], [93, 33, ... Read More
159 Views
To force the mask to hard, use the ma.MaskedArray.soften_mask() method. Whether the mask of a masked array is hard or soft is determined by its hardmask property. The soften_mask() sets hardmask to False.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range ... Read More
414 Views
To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy. The "to_begin" parameter sets the number(s) to prepend at the beginning of the returned differences.This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.ediff1d for details.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or notStepsAt first, import the ... Read More
16K+ Views
We can use the locator xpath to identify elements having search text with or spaces. Let us first examine the html code of a web element having trailing and leading spaces. In the below image, the text JAVA BASICS with tagname strong has spaces as reflected in the html code.If an element has spaces in its text or in the value of any attribute, then to create an xpath for such an element we have to use the normalize-space function. It removes all the trailing and leading spaces from the string. It also removes every new tab or lines ... Read More
200 Views
To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy. This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.ediff1d for details.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as npCreate an array with int elements using the numpy.array() ... Read More
200 Views
A new array from the set of choices is constructed using the np.ma.choose() method. The mode parameter is set to 'wrap'. If mode='wrap', values greater than n-1 are mapped to n-1; and then the new array is constructed.Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the choice arrays. Where a value in index is i, the new array will have the value that choices[i] contains in the same place.The choices parameter is the choice arrays. The index array and all of the choices should be ... Read More
146 Views
To force the mask to hard, use the ma.MaskedArray.harden_mask() method. Whether the mask of a masked array is hard or soft is determined by its hardmask property. The harden_mask() sets hardmask to True. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide ... Read More
518 Views
To return the length of the masked array, use the ma.MaskedArray.__len__() method in Python Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.StepsAt first, import ... Read More
137 Views
To return a new array when dtype is different from the current dtype, use the ma.MaskedArray.__array__(dtype) method in Python Numpy. We have set the dtype parameter to be float. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and ... Read More