- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Force the mask to soften in Numpy
To force the mask to hard, use the ma.MaskedArray.soften_mask() method. Whether the mask of a masked array is hard or soft is determined by its hardmask property. The soften_mask() sets hardmask to False.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
To force the mask to hard, use the ma.MaskedArray.soften_mask() method. Whether the mask of a masked array is hard or soft is determined by its hardmask property. The soften_mask() sets hardmask to False −
print("
Result...
",maskArr.soften_mask())
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To force the mask to hard, use the ma.MaskedArray.soften_mask() method # Whether the mask of a masked array is hard or soft is determined by its hardmask property. # The soften_mask() sets hardmask to False. print("
Result...
",maskArr.soften_mask())
Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]]
- Related Articles
- Force the mask to harden in Numpy
- Display the current mask in Numpy
- Reduce a mask to nomask when possible in Numpy
- Mask using floating point equality in Numpy
- Return the mask of a masked array in Numpy
- Mask array elements equal to a given value in Numpy
- Mask an array where the data is exactly equal to value in Numpy
- Mask array elements not equal to a given value in Numpy
- Create a boolean mask from an array in Numpy
- Mask an array inside a given interval in Numpy
- Mask an array outside a given interval in Numpy
- Mask array elements greater than a given value in Numpy
- Mask an array where a condition is met in Numpy
- Mask array elements less than a given value in Numpy
- Mask array elements greater than or equal to a given value in Numpy
