- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Use an index array to construct a new array from a set of choices with wrap mode in Numpy

A new array from the set of choices is constructed using the **np.ma.choose()** method. The mode parameter is set to '**wrap**'. If **mode='wrap'**, values greater than n-1 are mapped to n-1; and then the new array is constructed.

Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the choice arrays. Where a value in index is i, the new array will have the value that choices[i] contains in the same place.

The choices parameter is the choice arrays. The index array and all of the choices should be broadcastable to the same shape.

The mode parameter specifies how out-of-bounds indices will behave −

- 'raise' : raise an error
- 'wrap' : wrap around
- 'clip' : clip to the range

## Steps

At first, import the required library −

import numpy as np

Set choices array −

arr_choices = np.array([[5, 10, 15, 20, 25], [50, 55, 60, 65, 70], [100, 105, 110, 115, 120], [150, 155, 160, 165, 170], [200, 205, 210, 215, 220]])

Create a new array −

arr = np.array([2, 3, 4, 1, 8])

Displaying the array −

print("Array...

",arr)

Displaying the choices array −

print("

Choices Array...

",arr_choices)

A new array from the set of choices is constructed using the choose() method. The mode parameter is set to 'wrap'. Here, if mode='wrap', values greater than n-1 are mapped to n-1; and then the new array is constructed −

arrRes = np.ma.choose(arr, arr_choices, mode='wrap') print("

New Array from set of choices...

",arrRes)

## Example

import numpy as np # set choices array arr_choices = np.array([[5, 10, 15, 20, 25], [50, 55, 60, 65, 70], [100, 105, 110, 115, 120], [150, 155, 160, 165, 170], [200, 205, 210, 215, 220]]) # Create a new array arr = np.array([2, 3, 4, 1, 8]) # Displaying the array print("Array...

",arr) # Displaying the choices array print("

Choices Array...

",arr_choices) # A new array from the set of choices is constructed using the choose() method # The mode parameter is set to 'wrap' # if mode='wrap', values greater than n-1 are mapped to n-1; and then the new array is constructed arrRes = np.ma.choose(arr, arr_choices, mode='wrap') print("

New Array from set of choices...

",arrRes)

## Output

Array... [2 3 4 1 8] Choices Array... [[ 5 10 15 20 25] [ 50 55 60 65 70] [100 105 110 115 120] [150 155 160 165 170] [200 205 210 215 220]] New Array from set of choices... [100 155 210 65 170]

- Related Questions & Answers
- Use an index array to construct a new array from a set of choices with clip mode in Numpy
- Use an index array to construct a new array from a set of choices in Numpy
- Return an array formed from the elements of a masked array but wrap around range in NumPy
- Construct a record array from a wide-variety of objects in Numpy
- Create a new array from the masked array and return a new reference in Numpy
- JavaScript construct an array with elements repeating from a string
- Move axes of a Numpy array to new positions
- Construct an array from XOR of all elements of array except element at same index in C++
- Return a new array of a given shape filled with ones in Numpy
- Construct an array by executing a function over each coordinate in Numpy
- Return a new array of given shape and type, filled with array-like in Numpy
- Return a new array of given shape filled with ones in Numpy
- Return a new array of given shape filled with zeros in Numpy
- Mapping an array to a new array with default values in JavaScript
- Create a boolean mask from an array in Numpy