Data Structure
 Networking
 RDBMS
 Operating System
 Java
 MS Excel
 iOS
 HTML
 CSS
 Android
 Python
 C Programming
 C++
 C#
 MongoDB
 MySQL
 Javascript
 PHP
- Selected Reading
 - UPSC IAS Exams Notes
 - Developer's Best Practices
 - Questions and Answers
 - Effective Resume Writing
 - HR Interview Questions
 - Computer Glossary
 - Who is Who
 
Programming Articles - Page 742 of 3366
 
			
			469 Views
To shift the bits of array elements of a 2d array to the right, use the numpy.right_shift() method in Python Numpy. Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing x1 by 2**x2.The x1 is the Input values. The x2 is the number of bits to remove at the right of x1. If x1.shape != x2.shape, they must be broadcastable to a common shape.The function right_shift() returns x1 with bits shifted x2 times to the right. This is a scalar if both x1 and x2 are ... Read More
 
			
			150 Views
To shift the bits of an integer to the right, use the numpy.right_shift() method in Python Numpy. We have set the count of shifts as a new array. Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing x1 by 2**x2.The x1 is the Input values. The x2 is the number of bits to remove at the right of x1. If x1.shape != x2.shape, they must be broadcastable to a common shape.The function right_shift() returns x1 with bits shifted x2 times to the right. This is a ... Read More
 
			
			323 Views
To return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa, use the numpy.char.swapcase() method in Python Numpy. For 8-bit strings, this method is locale-dependent.The function swapcase() returns an output array of str or unicode, depending on input type. The numpy.char module provides a set of vectorized string operations for arrays of type numpy.str_ or numpy.bytes_.StepsAt first, import the required library −import numpy as npCreate a One-Dimensional array of strings −arr = np.array(['Katie', 'JOHN', 'Kate', 'AmY', 'brADley']) Displaying our array −print("Array...", arr)Get the datatype −print("Array datatype...", arr.dtype) Get the dimensions of the Array −print("Array ... Read More
 
			
			145 Views
To return a copy of an array with the leading and trailing characters removed, use the numpy.char.strip() method in Python Numpy. The "chars" parameter is used to set a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped.The numpy.char module provides a set of vectorized string operations for arrays of type numpy.str_ or numpy.bytes_.StepsAt first, import the required library −import numpy as npCreate a One-Dimensional array of string with some leading and trailing characters ... Read More
 
			
			144 Views
To return the sum along diagonals of the masked array elements, use the ma.MaskedArray.trace() in Numpy. The offset parameter is the offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0.The axis 1 and axis 2 are the axes to be used as the first and second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults are the first two axes of a. The dtype determines the data-type of the returned array and of the accumulator where the elements are summed. If dtype has the value None and a ... Read More
 
			
			2K+ Views
To convert masked array to float type, use the ma.MaskedArray.__float__() method in Numpy. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array using the numpy.array() method −arr = np.array([30]) print("Array...", arr) print("Array type...", arr.dtype)Get the dimensions of the Array −print("Array Dimensions...", arr.ndim)Create a masked array −maskArr = ma.masked_array(arr, mask =[False]) print("Our Masked Array", maskArr) print("Our Masked Array type...", ... Read More
 
			
			144 Views
To get the imaginary part from the masked array, use the ma.MaskedArray.imag attribute in Numpy. This property is a view on the imaginary part of this MaskedArray.A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreating an array of complex number elements using the numpy.array() method −arr = np.array([68.+4.j , 49.+7.j , 120.+2.j , 64.+0.j]) print("Array..", arr) print("Get the imaginary part", ... Read More
 
			
			134 Views
To get the Tuple of bytes to step in each dimension when traversing an array, use the ma.MaskedArray.strides attribute in Numpy. The byte offset of element (i[0], i[1], ..., i[n]) in an array a is −offset = sum(np.array(i) * a.strides)A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array using the numpy.array() method −arr = np.array([[35, 85], [67, 33]]) ... Read More
 
			
			672 Views
To get the total bytes consumed by the masked array, use the ma.MaskedArray.nbytes attribute in Numpy. Does not include memory consumed by non-element attributes of the array object.A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreate an array using the numpy.array() method −arr = np.array([[35, 85], [67, 33]]) print("Array...", arr) print("Array type...", arr.dtype) print("Array itemsize...", arr.itemsize)Get the dimensions of the ... Read More
 
			
			603 Views
To compare and return True if two string arrays are equal, use the numpy.char.equal() method in Python Numpy. The arr1 and arr2 are the two input string arrays of the same shape. Unlike numpy.equal, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarrayThe numpy.char module provides a set of vectorized string operations for arrays of type numpy.str_ or numpy.bytes_StepsAt first, import the required library −import numpy as npCreate two One-Dimensional arrays of string −arr1 = np.array(['Bella', 'Tom', 'John', 'Kate', 'Amy', 'Brad']) arr2 = np.array(['Cio', 'Tom', 'Cena', ... Read More