# Get the Imaginary part from the masked array in Numpy

NumpyServer Side ProgrammingProgramming

#### Python Data Science basics with Numpy, Pandas and Matplotlib

Most Popular

63 Lectures 6 hours

#### Data Analysis using NumPy and Pandas

19 Lectures 8 hours

#### Numpy with Python

Most Popular

12 Lectures 3 hours

To get the imaginary part from the masked array, use the ma.MaskedArray.imag attribute in Numpy. This property is a view on the imaginary part of this MaskedArray.

A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.

## Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Creating an array of complex number elements using the numpy.array() method −

arr = np.array([68.+4.j , 49.+7.j , 120.+2.j , 64.+0.j])
print("Array..\n",arr)
print("\nGet the imaginary part",arr.imag)
print("\nGet the datatype\n",arr.dtype)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[False, False, True, False])
print("\nOur Masked Array type...\n", maskArr.dtype)

Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)


Get the shape of the Masked Array −

print("\nOur Masked Array Shape...\n",maskArr.shape)

Get the number of elements of the Masked Array −

print("\nElements in the Masked Array...\n",maskArr.size)


To get the imaginary part from the masked array, use the ma.MaskedArray.imag attribute in Numpy −

print("\nGet the imaginary part...\n",maskArr.imag)

## Example

import numpy as np
import numpy.ma as ma

# Creating an array of complex number elements using the numpy.array() method
arr = np.array([68.+4.j , 49.+7.j , 120.+2.j , 64.+0.j])
print("Array..\n",arr)
print("\nGet the imaginary part",arr.imag)
print("\nGet the datatype\n",arr.dtype)
print("\nThe number of elements\n",arr.size)

# Create a masked array and mask some of them as invalid

# Get the dimensions of the Masked Array

# Get the shape of the Masked Array

# Get the number of elements of the Masked Array

# To get the imaginary part from the masked array, use the ma.MaskedArray.image attribute in Numpy
print("\nGet the imaginary part...\n",maskArr.imag)

## Output

Array..
[ 68.+4.j 49.+7.j 120.+2.j 64.+0.j]

Get the imaginary part [4. 7. 2. 0.]

Get the datatype
complex128

The number of elements
4

[(68+4j) (49+7j) -- (64+0j)]

Our Masked Array type...
complex128

Our Masked Array Dimensions...
1

Our Masked Array Shape...
(4,)

Elements in the Masked Array...
4

Get the imaginary part...
[4.0 7.0 -- 0.0]