Found 33676 Articles for Programming

How can Tensorflow be used to train the model using Python?

AmitDiwan
Updated on 20-Feb-2021 08:07:11

186 Views

The model can be trained using the ‘train’ method in Tensorflow, where the epochs (number of times the data has to be trained to fit the model) and the training data are specified.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.print("The model is being trained") epochs=12 history = model.fit(    train_ds,   ... Read More

How can Tensorflow be used to compile the model using Python?

AmitDiwan
Updated on 20-Feb-2021 08:05:40

262 Views

The created model in Tensorflow can be compiled using the ‘compile’ method. The loss is calculated using the ‘SparseCategoricalCrossentropy’ method.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.print("The model is being compiled") model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),    metrics=['accuracy']) print("The architecture of the model") model.summary()Code credit: https://www.tensorflow.org/tutorials/images/classificationOutputThe model is being compiled The architecture of the ... Read More

How can Tensorflow be used to create a sequential model using Python?

AmitDiwan
Updated on 20-Feb-2021 08:02:57

148 Views

A sequential model can be created using the ‘Sequential’ API that uses the ‘ layers.experimental.preprocessing.Rescaling’ method. The other layers are specified while created the model.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We will use the Keras Sequential API, which is helpful in building a sequential model that is used to work with a plain stack of layers, where every layer has exactly one input tensor and one output tensor.We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero ... Read More

How can Tensorflow be used to standardize the data using Python?

AmitDiwan
Updated on 20-Feb-2021 07:58:43

379 Views

We will be using the flowers dataset, which contains images of several thousands of flowers. It contains 5 sub-directories, and there is one sub-directory for every class. Once the flower dataset has been downloaded using the ‘get_file’ method, it will be loaded into the environment to work with it.The flower data can be standardized by introducing a normalization layer in the model. This layer is called the ‘Rescaling’ layer, which is applied to the entire dataset using the ‘map’ method.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We are using the Google Colaboratory to ... Read More

How can Tensorflow be used to configure the dataset for performance?

AmitDiwan
Updated on 20-Feb-2021 07:51:43

935 Views

The flower dataset can be configured for performance with the help of buffer prefetch, shuffle method, and cache method. Buffered prefetching can be used to ensure that the data can be taken from disk without having I/O become blocking. Dataset.cache() keeps the images in memory after they have been loaded off disk during the first epoch. Dataset.prefetch() will overlap the data preprocessing and model execution while training.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?The Keras Sequential API is used, which is helpful in building a sequential model that is used to work with ... Read More

How can Tensorflow be used to visualize the data using Python?

AmitDiwan
Updated on 20-Feb-2021 07:56:00

292 Views

Let's say we have flower dataset. The flower dataset can be downloaded using a google API that basically links to the flower dataset. The ‘get_file’ method can be used to pass the API as a parameter. Once this is done, the data gets downloaded into the environment.It can be visualized using the ‘matplotlib’ library. The ‘imshow’ method is used to display the image on the console. Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We will use the Keras Sequential API, which is helpful in building a sequential model that is used to work with ... Read More

How can Tensorflow be used to pre-process the flower training dataset?

AmitDiwan
Updated on 20-Feb-2021 07:21:09

182 Views

The flower dataset can be pre-processed using the keras preprocessing API. It has a method named ‘image_dataset_from_directory’ that takes the validation set, the directory where data is stored, and other parameters to process the dataset.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We will use the Keras Sequential API, which is helpful in building a sequential model that is used to work with a plain stack of layers, where every layer has exactly one input tensor and one output tensor. An image classifier is created using a keras.Sequential model, and data is loaded using ... Read More

How can Tensorflow be used to split the flower dataset into training and validation?

AmitDiwan
Updated on 20-Feb-2021 07:18:14

427 Views

The flower dataset can be split into training and validation set, using the keras preprocessing API, with the help of the ‘image_dataset_from_directory’ which asks for the percentage split for the validation set.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?An image classifier is created using a keras.Sequential model, and data is loaded using preprocessing.image_dataset_from_directory. Data is efficiently loaded off disk. Overfitting is identified and techniques are applied to mitigate it. These techniques include data augmentation, and dropout. There are images of 3700 flowers. This dataset contaisn 5 sub directories, and there is one sub ... Read More

How can Tensorflow be used to explore the flower dataset using keras sequential API?

AmitDiwan
Updated on 20-Feb-2021 07:16:52

134 Views

The flower dataset can be explored using the keras sequential API with the help of the ‘PIL’ package and the ‘Image.open’ method. Different subdirectories have different types of images of flowers, which can be indexed and displayed on the console.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?We will use the Keras Sequential API, which is helpful in building a sequential model that is used to work with a plain stack of layers, where every layer has exactly one input tensor and one output tensor.An image classifier is created using a keras.Sequential model, and ... Read More

How can Tensorflow be used to download the flower dataset using keras sequential API?

AmitDiwan
Updated on 20-Feb-2021 07:15:30

344 Views

The flower dataset can be downloaded using the keras sequential API with the help of google API that stores the dataset. The ‘get_file’ method is used with the API (URL) to fetch the dataset, and store it in memory.Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?A neural network that contains at least one layer is known as a convolutional layer. Convolutional neural networks have been used to produce great results for a specific kind of problems, such as image recognition.  An image classifier is created using a keras.Sequential model, and data is loaded ... Read More

Advertisements