
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 26504 Articles for Server Side Programming

630 Views
When it is required to check if the index of the elements is equal to the elements in the list, a simple iteration and the enumerate attribute is used.ExampleBelow is a demonstration of the same −my_list_1 = [12, 62, 19, 79, 58, 0, 99] my_list_2 = [12, 74, 19, 54, 58, 0, 11] print("The first list is :") print(my_list_1) print("The second list is :") print(my_list_2) my_list_1.sort() my_list_2.sort() print("The first list after sorting is ") print(my_list_1) print("The second list after sorting is ") print(my_list_2) check_list = [9, 8, 2] print("The check_list is :") print(check_list) my_result ... Read More

685 Views
When it is required to convert a list into an index value dictionary, the ‘enumerate' and a simple iteration are used.ExampleBelow is a demonstration of the same −my_list = [32, 0, 11, 99, 223, 51, 67, 28, 12, 94, 89] print("The list is :") print(my_list) my_list.sort(reverse=True) print("The sorted list is ") print(my_list) index, value = "index", "values" my_result = {index : [], value : []} for id, vl in enumerate(my_list): my_result[index].append(id) my_result[value].append(vl) print("The result is :") print(my_result)OutputThe list is : [32, 0, 11, 99, 223, 51, 67, 28, 12, 94, ... Read More

146 Views
When it is required to extend consecutive tuples, a simple iteration is used.ExampleBelow is a demonstration of the same −my_list = [(13, 526, 73), (23, 67, 0, 72, 24, 13), (94, 42), (11, 62, 23, 12), (93, ), (83, 61)] print("The list is :") print(my_list) my_list.sort(reverse=True) print("The list after sorting in reverse is :") print(my_list) my_result = [] for index in range(len(my_list) - 1): my_result.append(my_list[index] + my_list[index + 1]) print("The result is :") print(my_result)OutputThe list is : [(13, 526, 73), (23, 67, 0, 72, 24, 13), (94, 42), (11, 62, 23, 12), (93, ... Read More

246 Views
When it is required to filter unique valued tuples from a list of tuples, the ‘list’ and ‘set’ methods are used.ExampleBelow is a demonstration of the same −my_list = [(42, 51), (46, 71), (14, 25), (26, 91), (56, 0), (11, 1), (99, 102)] print("The list of tuple is :") print(my_list) my_list.sort() print("The list after sorting is :") print(my_list) my_result = list(set(my_list)) print("The result is :") print(my_result)OutputThe list of tuple is : [(42, 51), (46, 71), (14, 25), (26, 91), (56, 0), (11, 1), (99, 102)] The list after sorting is : [(11, 1), (14, 25), (26, 91), (42, 51), (46, ... Read More

426 Views
When it is required to convert a three dimensional matrix into a co-ordinate list, the ‘zip’ method, and a list comprehension are used.ExampleBelow is a demonstration of the same −my_list_1 = [[['He', 'Wi'], ['llo', 'll']], [['Pyt', 'i'], ['hon', 'sFun']], [['Ho', 'g'], ['pe', 'ood']]] print("The list is : ") print(my_list_1) my_list_1.sort() print("The list after sorting is ") print(my_list_1) my_result = [ele for sub_elem_1, sub_elem_2 in my_list_1 for ele in zip(sub_elem_1, sub_elem_2)] print("The resultant list is : ") print(my_result)OutputThe list is : [[['He', 'Wi'], ['llo', 'll']], [['Pyt', 'i'], ['hon', 'sFun']], [['Ho', 'g'], ['pe', 'ood']]] The list after sorting is [[['He', ... Read More

296 Views
When it is required to perform cross pairing in a list of tuples, the ‘zip’ method, a list comprehension and the ‘==’ operator is used.ExampleBelow is a demonstration of the same −my_list_1 = [('Hi', 'Will'), ('Jack', 'Python'), ('Bill', 'Mills'), ('goodwill', 'Jill')] my_list_2 = [('Hi', 'Band'), ('Jack', 'width'), ('Bill', 'cool'), ('a', 'b')] print("The first list is : " ) print(my_list_1) print("The second list is :") print(my_list_2) my_list_1.sort() my_list_2.sort() print("The first list after sorting is ") print(my_list_1) print("The second list after sorting is ") print(my_list_2) my_result = [(a[1], b[1]) for a, b in zip(my_list_1, my_list_2) if a[0] == b[0]] print("The ... Read More

9K+ Views
To group Pandas data frame, we use groupby(). To sort grouped data frames in ascending or descending order, use sort_values(). The size() method is used to get the data frame size. Steps Involved The steps included in sorting the panda's data frame by its group size are as follows. Importing the panda's library and Creating a Pandas dataframe. Grouping the columns by using the groupby() function and sorting the ... Read More

505 Views
To group columns in Pandas dataframe, use the groupby(). At first, let us create Pandas dataframe −dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Audi", "Mercedes", "Audi", "Lexus", "Mercedes", "Lexus", "Mercedes"], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )Let us now group according to Car column −res = dataFrame.groupby("Car")After grouping, we will use functions to find the means Registration prices (Reg_Price) of grouped car names −res.mean()This calculates mean of the Registration price according to column Car.ExampleFollowing is the code −import pandas as pd # dataframe with one of ... Read More

283 Views
To display the index of dataframe in the form of multiindex, use the dataframe.index(). At first, let us create a dictionary of lists −# dictionary of lists d = {'Car': ['BMW', 'Lexus', 'Audi', 'Mercedes', 'Jaguar', 'Bentley'], 'Date_of_purchase': ['2020-10-10', '2020-10-12', '2020-10-17', '2020-10-16', '2020-10-19', '2020-10-22'] }Create a DataFrame from the above dictionary of lists −dataFrame = pd.DataFrame(d)Now, set index column “Car” and display the index −dataFrame.set_index(["Car"], inplace=True, append=True, drop=False) print"Multiindex...", dataFrame.indexExampleFollowing is the code −import pandas as pd # dictionary of lists d = {'Car': ['BMW', 'Lexus', 'Audi', 'Mercedes', 'Jaguar', 'Bentley'], 'Date_of_purchase': ['2020-10-10', ... Read More

2K+ Views
We will group Pandas DataFrame using the groupby(). Select the column to be used using the grouper function. We will group day-wise and calculate sum of Registration Price with day interval for our example shown below for Car Sale Records.Set the frequency as an interval of days in the groupby() grouper method, that means, if the freq is 7D, that would mean data grouped by interval of 7 days of every month till the last date given in the date column.At first, let’s say the following is our Pandas DataFrame with three columns −import pandas as pd # dataframe ... Read More