Python - How to Group Pandas DataFrame by Days?

PythonServer Side ProgrammingProgramming

We will group Pandas DataFrame using the groupby(). Select the column to be used using the grouper function. We will group day-wise and calculate sum of Registration Price with day interval for our example shown below for Car Sale Records.

Set the frequency as an interval of days in the groupby() grouper method, that means, if the freq is 7D, that would mean data grouped by interval of 7 days of every month till the last date given in the date column.

At first, let’s say the following is our Pandas DataFrame with three columns −

import pandas as pd

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

Next, use the Grouper to select Date_of_Purchase column within groupby function. The frequency is set 7D i.e. interval of 7 Days grouped till the last date mentioned in the column −

print"
Group Dataframe by 7 days...
",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum()

Example

Following is the code −

import pandas as pd

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
       ],
       "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
    }
)

print"DataFrame...
",dataFrame # Grouper to select Date_of_Purchase column within groupby function print("
Group Dataframe by 7 days...
",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum() )

Output

This will produce the following output −

DataFrame...
        Car    Date_of_Purchase   Reg_Price
0      Audi      2021-06-10          1000
1     Lexus      2021-07-11          1400
2     Tesla      2021-06-25          1100
3  Mercedes      2021-06-29           900
4       BMW      2021-03-20          1700
5    Toyota      2021-01-22          1800
6    Nissan      2021-01-06          1300
7   Bentley      2021-01-04          1150
8   Mustang      2021-05-09          1350

Group Dataframe by 7 days...
                  Reg_Price
Date_of_Purchase
2021-01-04         2450.0
2021-01-11            NaN
2021-01-18         1800.0
2021-01-25            NaN
2021-02-01            NaN
2021-02-08            NaN
2021-02-15            NaN
2021-02-22            NaN
2021-03-01            NaN
2021-03-08            NaN
2021-03-15         1700.0
2021-03-22            NaN
2021-03-29            NaN
2021-04-05            NaN
2021-04-12            NaN
2021-04-19            NaN
2021-04-26            NaN
2021-05-03         1350.0
2021-05-10            NaN
2021-05-17            NaN
2021-05-24            NaN
2021-05-31            NaN
2021-06-07         1000.0
2021-06-14            NaN
2021-06-21         1100.0
2021-06-28          900.0
2021-07-05         1400.0
raja
Updated on 09-Sep-2021 14:44:45

Advertisements