Programming Articles - Page 990 of 3366

Python - Show which entries in a Pandas Index are not NA

AmitDiwan
Updated on 13-Oct-2021 09:38:30

172 Views

To show which entries in a Pandas Index are not NA, use the index.notna() method. At first, import the required libraries -import pandas as pd import numpy as npCreating Pandas index with some NaN values −index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) Display the Pandas index −print("Pandas Index...", index)Show which entries in a Pandas index are not-NA. Return True for non-NA entries −print("Check which entries are not-NA...", index.notna()) ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) # ... Read More

Python - Show which entries in a Pandas Index are NA

AmitDiwan
Updated on 13-Oct-2021 09:32:24

126 Views

To show which entries in a Pandas Index are NA, use the index.isna() in Pandas. At first, import the required libraries -import pandas as pd import numpy as npCreating Pandas index with some NaN values −index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) Display the Pandas index −print("Pandas Index...", index)Show which entries in a Pandas index are NA. Return True for NA entries −print("Check which entries are NA...", index.isna()) ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) # ... Read More

Python Pandas - Drop the value when all levels are NaN in a Multi-index

AmitDiwan
Updated on 13-Oct-2021 09:30:35

960 Views

To drop the value when all levels are NaN in a Multi-index, use the multiIndex.dropna() method. Set the parameter how with value all.At first, import the required libraries -import pandas as pd import numpy as npCreate a multi-index with all NaN values. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[np.nan, np.nan], [np.nan, np.nan]], names=['a', 'b'])Drop the value when all levels iareNaN in a Multi-index. With all NaN values, the dropna() will drop all the values, if the "how" parameter of the dropna() is set "all" −print("Dropping the values when all levels are NaN...", ... Read More

Python Pandas - Drop the value when any level is NaN in a Multi-index

AmitDiwan
Updated on 13-Oct-2021 09:27:52

811 Views

To drop the value when any level is NaN in a Multi-index, use the multiIndex.dropna() method. Set the parameter how with value any.At first, import the required libraries -import pandas as pd import numpy as npCreate a multi-index with some NaN values. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[5, 10], [np.nan, 20], [25, np.nan], [35, 40]], names=['a', 'b', 'c', 'd'])Drop the value when any level is NaN in a Multi-index. Even with a single NaN value, the dropna() will drop all the values. The "how" parameter of the dropna() is used with ... Read More

Python Pandas - Return Index without NaN values

AmitDiwan
Updated on 13-Oct-2021 09:22:41

431 Views

To return Index without NaN values, use the index.dropna() method in Pandas. At first, import the required libraries −import pandas as pd import numpy as npCreating Pandas index with some NaN values as well −index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) Display the Pandas index −print("Pandas Index...", index)Drop only the NaN values −print("The Index object after removing NaN values...", index.dropna())ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values as well index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) # Display ... Read More

Python Pandas - Fill NaN values with the specified value in an Index object

AmitDiwan
Updated on 13-Oct-2021 09:20:47

650 Views

To fill NaN values with the specified value in an Index object, use the index.fillna() method in Pandas. At first, import the required libraries −import pandas as pd import numpy as npCreating Pandas index with some NaN values as well −index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) Display the Pandas index −print("Pandas Index...", index)Fill the NaN with some specific value −print("Index object after filling NaN value...", index.fillna('Amit')) ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values as well index = pd.Index([50, 10, 70, np.nan, ... Read More

Python – Remove multiples levels using the level names and return the index

AmitDiwan
Updated on 13-Oct-2021 09:18:27

148 Views

To remove multiples levels using the level names and return the index, use the multiIndex.droplevel(). Set the level names as parameter.At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Display the multi-index −print("Multi-index...", multiIndex)Dropping multiple levels using the level names. We have passed the names of the levels to be removed as a parameter −print("Dropping multiple level...", multiIndex.droplevel(['a', 'd'])) ExampleFollowing is the code −import pandas as pd # Create a multi-index ... Read More

Python – Remove a level using the name of the level and return the index

AmitDiwan
Updated on 13-Oct-2021 09:15:09

760 Views

To remove a level using the name of the level and return the index, use the multiIndex.droplevel() method in Pandas. Set the name of the level to be removed as parameter.At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Display the multi-index −print("Multi-index...", multiIndex)Dropping a level using the level name. We have passed the name of the level to be removed as a parameter −print("Dropping a level...", multiIndex.droplevel('b')) ExampleFollowing is the code ... Read More

Python - Return index with a specific level removed

AmitDiwan
Updated on 13-Oct-2021 09:08:59

139 Views

To return index with a specific level removed, use the multiIndex.droplevel() method in Pandas. At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd'])Dropping a level. We have passed the position of the level to be removed as a parameter −print("Dropping a level...", multiIndex.droplevel(3)) ExampleFollowing is the code −import pandas as pd # Create a multi-index # The names parameter sets the names for the levels in the index multiIndex = pd.MultiIndex.from_arrays([[5, ... Read More

Python – Return index with a level removed

AmitDiwan
Updated on 13-Oct-2021 09:04:36

113 Views

To return index with a level removed, use the multiIndex.droplevel() method in Pandas. At first, import the required libraries −import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Dropping a level from the multiindex −print("Dropping a level...", multiIndex.droplevel())ExampleFollowing is the code −import pandas as pd # Create a multi-index # The names parameter sets the names for the levels in the index multiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) ... Read More

Advertisements