Show NA Entries in a Pandas Index

AmitDiwan
Updated on 13-Oct-2021 09:32:24

126 Views

To show which entries in a Pandas Index are NA, use the index.isna() in Pandas. At first, import the required libraries -import pandas as pd import numpy as npCreating Pandas index with some NaN values −index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) Display the Pandas index −print("Pandas Index...", index)Show which entries in a Pandas index are NA. Return True for NA entries −print("Check which entries are NA...", index.isna()) ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values index = pd.Index([5, 65, np.nan, 17, 75, np.nan]) # ... Read More

Drop Values When All Levels are NaN in Multi-Index with Pandas

AmitDiwan
Updated on 13-Oct-2021 09:30:35

959 Views

To drop the value when all levels are NaN in a Multi-index, use the multiIndex.dropna() method. Set the parameter how with value all.At first, import the required libraries -import pandas as pd import numpy as npCreate a multi-index with all NaN values. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[np.nan, np.nan], [np.nan, np.nan]], names=['a', 'b'])Drop the value when all levels iareNaN in a Multi-index. With all NaN values, the dropna() will drop all the values, if the "how" parameter of the dropna() is set "all" −print("Dropping the values when all levels are NaN...", ... Read More

Drop Values with NaN in Multi-Index using Python Pandas

AmitDiwan
Updated on 13-Oct-2021 09:27:52

810 Views

To drop the value when any level is NaN in a Multi-index, use the multiIndex.dropna() method. Set the parameter how with value any.At first, import the required libraries -import pandas as pd import numpy as npCreate a multi-index with some NaN values. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[5, 10], [np.nan, 20], [25, np.nan], [35, 40]], names=['a', 'b', 'c', 'd'])Drop the value when any level is NaN in a Multi-index. Even with a single NaN value, the dropna() will drop all the values. The "how" parameter of the dropna() is used with ... Read More

Return Index Without NaN Values in Python Pandas

AmitDiwan
Updated on 13-Oct-2021 09:22:41

428 Views

To return Index without NaN values, use the index.dropna() method in Pandas. At first, import the required libraries −import pandas as pd import numpy as npCreating Pandas index with some NaN values as well −index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) Display the Pandas index −print("Pandas Index...", index)Drop only the NaN values −print("The Index object after removing NaN values...", index.dropna())ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values as well index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) # Display ... Read More

Fill NaN Values with Specified Value in Pandas Index Object

AmitDiwan
Updated on 13-Oct-2021 09:20:47

650 Views

To fill NaN values with the specified value in an Index object, use the index.fillna() method in Pandas. At first, import the required libraries −import pandas as pd import numpy as npCreating Pandas index with some NaN values as well −index = pd.Index([50, 10, 70, np.nan, 90, 50, np.nan, np.nan, 30]) Display the Pandas index −print("Pandas Index...", index)Fill the NaN with some specific value −print("Index object after filling NaN value...", index.fillna('Amit')) ExampleFollowing is the code −import pandas as pd import numpy as np # Creating Pandas index with some NaN values as well index = pd.Index([50, 10, 70, np.nan, ... Read More

Remove Multiple Levels Using Level Names in Python

AmitDiwan
Updated on 13-Oct-2021 09:18:27

148 Views

To remove multiples levels using the level names and return the index, use the multiIndex.droplevel(). Set the level names as parameter.At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Display the multi-index −print("Multi-index...", multiIndex)Dropping multiple levels using the level names. We have passed the names of the levels to be removed as a parameter −print("Dropping multiple level...", multiIndex.droplevel(['a', 'd'])) ExampleFollowing is the code −import pandas as pd # Create a multi-index ... Read More

Remove a Level by Name and Return Index in Python

AmitDiwan
Updated on 13-Oct-2021 09:15:09

759 Views

To remove a level using the name of the level and return the index, use the multiIndex.droplevel() method in Pandas. Set the name of the level to be removed as parameter.At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Display the multi-index −print("Multi-index...", multiIndex)Dropping a level using the level name. We have passed the name of the level to be removed as a parameter −print("Dropping a level...", multiIndex.droplevel('b')) ExampleFollowing is the code ... Read More

Return Index with Specific Level Removed in Python

AmitDiwan
Updated on 13-Oct-2021 09:08:59

139 Views

To return index with a specific level removed, use the multiIndex.droplevel() method in Pandas. At first, import the required libraries -import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the indexmultiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd'])Dropping a level. We have passed the position of the level to be removed as a parameter −print("Dropping a level...", multiIndex.droplevel(3)) ExampleFollowing is the code −import pandas as pd # Create a multi-index # The names parameter sets the names for the levels in the index multiIndex = pd.MultiIndex.from_arrays([[5, ... Read More

Return Index with a Level Removed in Python

AmitDiwan
Updated on 13-Oct-2021 09:04:36

113 Views

To return index with a level removed, use the multiIndex.droplevel() method in Pandas. At first, import the required libraries −import pandas as pdCreate a multi-index. The names parameter sets the names for the levels in the index −multiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) Dropping a level from the multiindex −print("Dropping a level...", multiIndex.droplevel())ExampleFollowing is the code −import pandas as pd # Create a multi-index # The names parameter sets the names for the levels in the index multiIndex = pd.MultiIndex.from_arrays([[5, 10], [15, 20], [25, 30], [35, 40]], names=['a', 'b', 'c', 'd']) ... Read More

Set Index Name for an Already Created Index Object in Python Pandas

AmitDiwan
Updated on 13-Oct-2021 09:00:52

275 Views

To set index name for an already created Index object, use the index.set_names() method in Pandas. At first, import the required libraries −import pandas as pdCreating Pandas index −index = pd.Index(["Electronics", "Mobile Phones", "Accessories", "Home Decor", "Books"]) Display the Pandas index −print("Pandas Index...", index)Set the name of index −print("Set the index name...", index.set_names('Products')) ExampleFollowing is the code −import pandas as pd # Creating Pandas index index = pd.Index(["Electronics", "Mobile Phones", "Accessories", "Home Decor", "Books"]) # Display the Pandas index print("Pandas Index...", index) # Return the number of elements in the Index print("Number of elements in the index...", ... Read More

Advertisements