To check if the index has duplicate values, use the index.has_duplicates property in Pandas.At first, import the required libraries −import pandas as pdCreating the index −index = pd.Index(['Car', 'Bike', 'Truck', 'Car', 'Airplane']) Display the index −print("Pandas Index...", index)Check if the index is having duplicate values −print("Is the Pandas index having duplicate values?", index.has_duplicates) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index(['Car', 'Bike', 'Truck', 'Car', 'Airplane']) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Check if the index ... Read More
To check if the index has unique values, use the index.is_unique.At first, import the required libraries −import pandas as pdLet us create the index −index = pd.Index([50, 40, 30, 20, 10]) Display the index −print("Pandas Index...", index)Check if the index is having unique values −print("Is the Pandas index having unique values?", index.is_unique) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index([50, 40, 30, 20, 10]) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Check if the index is ... Read More
To return if the index is monotonic decreasing (only equal or decreasing) values, use the index.is_monotonic_decreasing property.At first, import the required libraries −import pandas as pdCreating the index −index = pd.Index([50, 40, 30, 30, 30]) Display the index −print("Pandas Index...", index)Check if the index monotonic decreasing −print("Is the Pandas index monotonic decreasing?", index.is_monotonic_decreasing) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index([50, 40, 30, 30, 30]) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Check if the index ... Read More
To return if the index is monotonic increasing (only equal or increasing) values, use the index.is_monotonic_increasing property.At first, import the required libraries −import pandas as pdCreating the index −index = pd.Index([10, 20, 20, 30, 40]) Display the index −print("Pandas Index...", index)Check if the index monotonic increasing −print("Is the Pandas index monotonic increasing?", index.is_monotonic_increasing) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index([10, 20, 20, 30, 40]) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Check if the index ... Read More
To return an array representing the data in the Pandas Index, use the index.values property in Pandas.At first, import the required libraries −import pandas as pdCreating the index −index = pd.Index(['Car', 'Bike', 'Truck', 'Ship', 'Airplane']) Display the index −print("Pandas Index...", index)Return an array representing the data in the Index −print("Array...", index.values) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index(['Car', 'Bike', 'Truck', 'Ship', 'Airplane']) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Display the transpose of the index ... Read More
To return the Transpose of the index, use the index.T property.At first, import the required libraries −import pandas as pdCreating the index −index = pd.Index(['Car', 'Bike', 'Truck', 'Ship', 'Airplane']) Display the index −print("Pandas Index...", index)Display the transpose of the index −print("Transpose of the Pandas Index which is by definition self...", index.T) ExampleFollowing is the code −import pandas as pd # Creating the index index = pd.Index(['Car', 'Bike', 'Truck', 'Ship', 'Airplane']) # Display the index print("Pandas Index...", index) # Return an array representing the data in the Index print("Array...", index.values) # Display the transpose of the index ... Read More
To return an IntervalArray identical to the current one but closed on the specified side, use the array.set_closed() with parameter both.At first, import the required libraries −import pandas as pdConstruct a new IntervalArray from an array-like of splits −array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5])Display the intervals −print("Our IntervalArray...", array)An IntervalArray identical to the current one but closed on the specified side −print("An identical IntervalArray closed on the specified side...", array.set_closed('both'))ExampleFollowing is the code −import pandas as pd # Construct a new IntervalArray from an array-like of splits array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) # ... Read More
To check elementwise if the Intervals contain the value, use the array.contains() method.At first, import the required libraries −import pandas as pdConstruct a new IntervalArray from an array-like of splits −array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) Display the intervals −print("Our IntervalArray...", array)Check whether the Interval contain a specific value −print("Does the Intervals contain the value? ", array.contains(3.5)) ExampleFollowing is the code −import pandas as pd # Construct a new IntervalArray from an array-like of splits array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) # Display the IntervalArray print("Our IntervalArray...", array) # Getting the length of ... Read More
To create an IntervalArray from an array of splits, use the pandas.arrays.IntervalArray.from_breaks().To check the intervals are closed on the left or right-side, both or neither, use the array.closed property.At first, import the required libraries −import pandas as pdConstruct a new IntervalArray from an array-like of splits. The intervals are closed on the "right" by default −array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) Display the intervals −print("Our IntervalArray...", array)Check whether the intervals in the Interval Array is closed on the left-side, right-side, both or neither −print("Checking whether the intervals is closed...", array.closed) ExampleFollowing is the code −import pandas as pd ... Read More
To construct an IntervalArray from an array of splits, use the pandas.arrays.IntervalArray.from_breaks(). To return the right endpoints of each interval, use the array.right property.At first, import the required libraries −import pandas as pdConstruct a new IntervalArray from an array-like of splits −array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) Display the intervals −print("Our IntervalArray...", array)Get the right endpoints −print("The right endpoints of each Interval in the IntervalArray as an Index...", array.right) ExampleFollowing is the code −import pandas as pd # Construct a new IntervalArray from an array-like of splits array = pd.arrays.IntervalArray.from_breaks([0, 1, 2, 3, 4, 5]) # ... Read More
 Data Structure
 Networking
 RDBMS
 Operating System
 Java
 iOS
 HTML
 CSS
 Android
 Python
 C Programming
 C++
 C#
 MongoDB
 MySQL
 Javascript
 PHP