
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
All Possible Full Binary Trees in C++
Suppose a full binary tree is a binary tree where each node has exactly 0 or 2 children. So we have to find a list of all possible full binary trees with N nodes. Each node of each tree in the answer must have node.val = 0. The returned trees can be in any order. So if the input is 7, then the trees are −
To solve this, we will follow these steps −
Define a map m of integer type key and tree type value.
define a method called allPossibleFBT(), this will take N as input
is N is 1, then create a tree with one node whose value is 0, and return
if m has the key N, then return m[N] Define an array called temp, and req := N – 1
for left in range 1 to req – 1
right := req – left
if left = 2 or right = 2, then go for next iteration
leftPart := allPossibleFBT(left), rightPart := allPossibleFBT(right)
for j in range 0 to size of leftPart - 1
for k in range 0 to size of rightPart – 1
root := a new node with value 0
left of root := leftPart[j], right of root := rightPart[k]
insert root into ans
set m[N] := ans and return.
Example(C++)
Let us see the following implementation to get a better understanding −
#include <bits/stdc++.h> using namespace std; class TreeNode{ public: int val; TreeNode *left, *right; TreeNode(int data){ val = data; left = right = NULL; } }; void tree_level_trav(TreeNode*root){ if (root == NULL) return; cout << "["; queue<TreeNode *> q; TreeNode *curr; q.push(root); q.push(NULL); while (q.size() > 1) { curr = q.front(); q.pop(); if (curr == NULL){ q.push(NULL); } else { if(curr->left) q.push(curr->left); if(curr->right) q.push(curr->right); if(curr == NULL || curr->val == 0){ cout << "null" << ", "; } else { cout << curr->val << ", "; } } } cout << "]"<<endl; } class Solution { public: map < int, vector <TreeNode*> > m; vector<TreeNode*> allPossibleFBT(int N) { if(N == 1){ vector <TreeNode*> temp; TreeNode *n = new TreeNode(1); n->left = new TreeNode(0); n->right = new TreeNode(0); temp.push_back(n); return temp; } if(m.count(N))return m[N]; vector <TreeNode*> ans; int required = N - 1; for(int left = 1; left < required; left++){ int right = required - left; if(left == 2 || right == 2)continue; vector <TreeNode*> leftPart = allPossibleFBT(left); vector <TreeNode*> rightPart = allPossibleFBT(right); for(int j = 0; j < leftPart.size(); j++){ for(int k = 0; k < rightPart.size(); k++){ TreeNode* root = new TreeNode(1); root->left = leftPart[j]; root->right = rightPart[k]; ans.push_back(root); } } } return m[N] = ans; } }; main(){ vector<TreeNode*> v; Solution ob; v = (ob.allPossibleFBT(7)) ; for(TreeNode *t : v){ tree_level_trav(t); } }
Input
7
Output
[1, 1, 1, null, null, 1, 1, null, null, 1, 1, null, null, null, null, ] [1, 1, 1, null, null, 1, 1, 1, 1, null, null, null, null, null, null, ] [1, 1, 1, 1, 1, 1, 1, null, null, null, null, null, null, null, null, ] [1, 1, 1, 1, 1, null, null, null, null, 1, 1, null, null, null, null, ] [1, 1, 1, 1, 1, null, null, 1, 1, null, null, null, null, null, null, ]
- Related Articles
- All Elements in Two Binary Search Trees in C++
- Print all full nodes in a Binary Tree in C++
- Multidimensional Binary Search Trees
- Binary Search Trees in Data Structures
- Unique Binary Search Trees in C++
- Flip Equivalent Binary Trees in C++
- Merge Two Binary Trees in C++
- Threaded Binary Trees in Data Structure
- Binary Trees With Factors in C++
- Enumeration of Binary Trees in C++
- Binary Trees and Properties in Data Structures
- Optimal Binary Search Trees in Data Structures
- Unique Binary Search Trees II in C++
- Balanced binary search trees in Data Structure
- Binary Trees as Dictionaries in Data Structure
