Maximum Bipartite Matching

Graph AlgorithmsData StructureAlgorithms

The bipartite matching is a set of edges in a graph is chosen in such a way, that no two edges in that set will share an endpoint. The maximum matching is matching the maximum number of edges.

When the maximum match is found, we cannot add another edge. If one edge is added to the maximum matched graph, it is no longer a matching. For a bipartite graph, there can be more than one maximum matching is possible.

Input and Output

Input:
The adjacency matrix.
0 1 1 0 0 0
1 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

Output:
Maximum number of applicants matching for job: 5

Algorithm

bipartiteMatch(u, visited, assign)

Input: Starting node, visited list to keep track, assign the list to assign node with another node.

Output − Returns true when a matching for vertex u is possible.

Begin
   for all vertex v, which are adjacent with u, do
      if v is not visited, then
         mark v as visited
         if v is not assigned, or bipartiteMatch(assign[v], visited, assign) is true, then
            assign[v] := u
            return true
   done
   return false
End

maxMatch(graph)

Input − The given graph.

Output − The maximum number of the match.

Begin
   initially no vertex is assigned
   count := 0
   for all applicant u in M, do
      make all node as unvisited
      if bipartiteMatch(u, visited, assign), then
         increase count by 1
   done
End

Example

#include <iostream>
#define M 6
#define N 6
using namespace std;

bool bipartiteGraph[M][N] = {    //A graph with M applicant and N jobs
   {0, 1, 1, 0, 0, 0},
   {1, 0, 0, 1, 0, 0},
   {0, 0, 1, 0, 0, 0},
   {0, 0, 1, 1, 0, 0},
   {0, 0, 0, 0, 0, 0},
   {0, 0, 0, 0, 0, 1}
};

bool bipartiteMatch(int u, bool visited[], int assign[]) {
   for (int v = 0; v < N; v++) {    //for all jobs 0 to N-1
      if (bipartiteGraph[u][v] && !visited[v]) {    //when job v is not visited and u is interested
         visited[v] = true;    //mark as job v is visited
         //when v is not assigned or previously assigned
         if (assign[v] < 0 || bipartiteMatch(assign[v], visited, assign)) {
            assign[v] = u;    //assign job v to applicant u
            return true;
         }
      }
   }
   return false;
}

int maxMatch() {
   int assign[N];    //an array to track which job is assigned to which applicant
   for(int i = 0; i<N; i++)
      assign[i] = -1;    //initially set all jobs are available
   int jobCount = 0;

   for (int u = 0; u < M; u++) {    //for all applicants
      bool visited[N];
      for(int i = 0; i<N; i++)
         visited[i] = false;    //initially no jobs are visited
      if (bipartiteMatch(u, visited, assign))    //when u get a job
         jobCount++;
   }
   return jobCount;
}

int main() {
   cout << "Maximum number of applicants matching for job: " << maxMatch();
}

Output

Maximum number of applicants matching for job: 5
raja
Published on 10-Jul-2018 12:19:30
Advertisements