- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Nyquist Rate and Nyquist Interval?
Nyquist Rate of Sampling
The theoretical minimum sampling rate at which a signal can be sampled and still can be reconstructed from its samples without any distortion is called the Nyquist rate of sampling.
Mathematically,
$$\mathrm{Nyquist\: Rate,\mathit{f_{N}}\mathrm{=}2\mathit{f_{m}}}$$
Where, $\mathit{f_{m}}$is the maximum frequency component present in the signal.
If the signal is sampled at the rate greater than the Nyquist rate, then the signal is called over sampled.
If the signal is sampled at the rate less than its Nyquist rate, then it is said to be under sampled.
Nyquist Interval
When the rate of sampling is equal to the Nyquist rate, then the time interval between any two adjacent samples is called the Nyquist interval.
Mathematically, the Nyquist interval is given by,
$$\mathrm{Nyquist \:interval\:\mathrm{=}\:\frac{1}{\mathit{f_{N}}}\mathrm{=}\frac{1}{\mathit{\mathrm{2}f_{m}}}}$$
Numerical Example
Determine the Nyquist rate and Nyquist interval corresponding to signal given by,
$$\mathrm{\mathit{x\mathrm{\left(\mathit{t}\right )}\mathrm{=}\mathrm{1}\:\mathrm{+}\:\mathrm{sin\: 3000}\mathit{\pi t}\:\mathrm{+}\:\mathrm{cos\: 5000}\mathit{\pi t}}}$$
Solution
The given signal is,
$$\mathrm{\mathit{x\mathrm{\left(\mathit{t}\right )}\mathrm{=}\mathrm{1}\:\mathrm{+}\:\mathrm{sin\: 3000}\mathit{\pi t}\:\mathrm{+}\:\mathrm{cos\: 5000}\mathit{\pi t}}}$$
For this signal, we have,
Highest frequency component in 1 is 0.
Highest frequency component in term $\mathrm{sin\: 3000}\mathit{\pi t}\:\mathrm{=}\:\mathrm{sin\: \mathit{\omega _{m\mathrm{1}}\mathit{t}}\: is\: 3000\:\mathit{\pi}}$.
Highest frequency component in term $\mathrm{cos\: 5000}\mathit{\pi t}\:\mathrm{=}\:\mathrm{cos\: \mathit{\omega _{m\mathrm{2}}\mathit{t}}\: is\: 5000\: \mathit{\pi}}$.
Therefore, the maximum frequency component in the signal $\mathit{x\mathrm{\left ( \mathit{t} \right )}}$ is $\mathit{\omega_{m}\:\mathrm{=}\:\mathit{\omega _{m\mathrm{2}}}\mathrm{=}\mathrm{5000}\mathit{\pi}}$,i.e., highest of 0, 3000$\mathit{\pi}$ and 4000 $\mathit{\pi}$.
Thus, the maximum frequency component present in the signal is given by,
$$\mathrm{\mathit{f_{m}\mathrm{=}\frac{\mathit{\omega _{m}}}{\mathrm{2}\pi }}\mathrm{=}\frac{5000}{2\mathit{\pi}}\:\mathrm{=}\:2500\:\mathrm{HZ}}$$
Hence, the Nyquist rate of sampling is,
$$\mathrm{\mathrm{Nyquist \:rate,\mathit{f_{N}}\mathrm{=}2\mathit{f_{m}}}}$$
$$\mathrm{\Rightarrow \mathit{f_{N}\:\mathrm{=}\:\mathrm{2\times 2500}\:\mathrm{=}\:\mathrm{5000\:HZ}}}$$
And the Nyquist interval is,
$$\mathrm{\mathrm{Nyquist \:interval\:\mathrm{=}\:\frac{1}{\mathit{f_{N}}}\mathrm{=}\frac{1}{2\mathit{f_{m}}}}}$$
$$\mathrm{\Rightarrow \mathrm{Nyquist\: interval\:\mathrm{=}\:\frac{1}{5000}}\:\mathrm{=}\:0.2\:\mathrm{ms}}$$
- Related Articles
- What is the meaning of birth rate and death rate?
- What is the relationship between the rate of heartbeat and pulse rate?
- What is MySQL INTERVAL() function?
- What is Rate Adaptation?
- What is breathing rate?
- What is Dispatch Rate?
- What is Interest Rate Risk?
- What is Absorption Rate and what is its influence in the Property Market?
- What are the differences between interest rate and annual percentage rate?
- What is the employee turnover rate?
- What is the equity capitalization rate?
- What is the going rate pricing method?
- What is Required Rate of Return (RRR)?
- What is Risk-adjusted Discounted Rate Method?
- What are interval-scaled variables?
