- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Instance-based representation?
The simplest structure of learning is plain memorization, or rote learning. Because a group of training instances has been remembered, on encountering a new instance the memory is investigated for the training instance that most powerfully resembles the new one.
The only problem is how to clarify resembles. First, this is a completely different method of describing the “knowledge” extracted from a group of instances − It stores the instances themselves and works by associating new instances whose class is unknown to the current ones whose class is known. Rather than trying to make rules, work directly from the instances themselves. This is called instance-based learning.
In instance-based learning, all the actual work is completed when the time appears to define a new instance instead of when the training set is processed. The difference between this approach and the others that it can be seen is the time at which the “learning” takes place.
Instance-based learning is inactive, deferring the real work considering possible, whereas different methods are eager, generalizing as soon as the data has been seen. In instance-based classification, each new instance is distinguished from current ones using a distance metric, and the nearest existing instance is used to make the class to the new one. This is known as the nearest-neighbor classification method.
Sometimes more than one nearest neighbor is used, and the majority class of the nearest k neighbors (or the distance weighted average if the class is numeric) is created to the new instance. This is defined as the k-nearest-neighbor method.
When nominal attributes are current, it is essential to come up with a “distance” between multiple values of that attribute. Various attributes will be significant than others, and it is usually reflected in the distance metric by several types of attribute weighting. It is changing suitable attribute weights from the training group is an essential problem in instance-based learning.
An apparent limitation to instance-based representations is that they do not create explicit architecture that is learned. The instances connect with the distance metric to divide out boundaries into instanced areas that analyze one class from another, and this is a type of explicit description of knowledge.
For instance, given a single instance of each of two classes, the nearest-neighbor rule efficiently divides the instance area along the perpendicular bisector of the line connecting the instances. Given several instances of every class, the space is splitted by a set of lines that defines the perpendicular bisectors of selected lines linking an instance of one class to one of another class.
- Related Articles
- FabricJS – How to create the instance of fabric.Image from its object representation?
- What is an instance in DBMS?
- What is instance and schema (DBMS)?
- What is instance variable hiding in Java?
- FabricJS – How to get the image element on which the current instance is based on?
- Decibel Based Representation of Wireless Communication Parameters - Converting Between the Parameters
- What is Decibel Representation for Wireless Communications?
- What is types of Intermediate Code Representation?
- What is representation of fixed-length and variablelength array representation in the symbol table?
- What is Fixed Point Representation in Computer Architecture?
- What is Floating-Point Representation in Computer Architecture?
- What is Array Name Representation in Symbol Table?
- What is Grid Based Methods?
- What is Value-Based Pricing?
- What is Prototype-Based Clustering?
