Use Euclid’s division algorithm to find the HCF of 441, 567 and 693.

AcademicMathematicsNCERTClass 10

Given: 

441, 567 and 693.

To find: 

Here we have to find the HCF of the given numbers.

Solution:

Using Euclid\'s division algorithm to find HCF:

$a=693$ and $b=567$

Using Euclid’s lemma to get: 

$693\ =\ 567\ \times\ 1\ +\ 26$

$567\ =\ 126\ \times\ 4\ +\ 63$

$126\ =\ 63\ \times\ 2\ +\ 0$

HCF(693, 567) $=63$

Now,

$c=441$ and $d=63$

Using Euclid’s lemma to get: 

$441\ =\ 63\ \times\ 7\ +\ 0$

HCF(693, 567, 441) $=63$

So, HCF of 693, 567 and 441 is 63.

raja
Updated on 10-Oct-2022 13:27:08

Advertisements