- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Transform a masked array into a flexibletype array with torecords() in Numpy
To transform a masked array into a flexible-type array, use the ma.MaskedArray.torecords(). The flexible type array that is returned will have two fields
The _data field stores the _data part of the array.
The _mask field stores the _mask part of the array.method in Numpy.
Returns a new flexible-type ndarray with two fields − the first element containing a value, the second element containing the corresponding mask boolean. The returned record shape matches self.shape.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
Transform a masked array into a flexible-type array, use the ma.MaskedArray.torecords() method in Numpy. The flexible type array that is returned will have two fields: the _data field stores the _data part of the array −
print("
Result of the transformation...
",maskArr.torecords())
Example
# Python - Transform a masked array into a flexible-type array with MaskedArray.torecords() import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To transform a masked array into a flexible-type array, use the ma.MaskedArray.torecords() method in Numpy # The flexible type array that is returned will have two fields: the _data field stores the _data part of the array. #, the _mask field stores the _mask part of the array. print("
Result of the transformation...
",maskArr.torecords())
Output
Array... [[49 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[49 85 --] [67 -- 59]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Result of the transformation... [[(49, False) (85, False) (45, True)] [(67, False) (33, True) (59, False)]]
- Related Articles
- Transform a masked array into a flexibletype array in Numpy
- Divide a scalar value into every element of a masked Array with __truediv__() in NumPy
- Divide every element of a masked Array into a scalar value with __rtruediv__() in NumPy
- Divide a scalar value into every element of a masked Array in NumPy
- Transform nested array into normal array with JavaScript?
- Return a copy of the masked array collapsed into one dimension in Numpy
- Repeat elements of a masked array in Numpy
- Add every element of a masked Array with a scalar value in NumPy
- Empty masked array with the properties of an existing array in Numpy
- Return a view of the masked array with axes transposed in NumPy
- Return specified diagonals from a masked array in NumPy
- Check the base of a masked array in NumPy
- Get the datatype of a masked array in NumPy
- Return a copy of the masked array in NumPy
- Dump a pickle of the masked array in NumPy
