- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Repeat elements of a masked array in Numpy
To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy. The "repeats" parameter sets the number of repetitions for each element. Here, repeats is broadcasted to fit the shape of the given axis. It returns the output array which has the same shape as a, except along the given axis.
The axis is the axis along which to repeat values. By default, use the flattened input array, and return a flat output array.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy. The "repeats" parameter sets the number of repetitions for each element. The repeats is broadcasted to fit the shape −
print("
Result...
",maskArr.repeat(3))
Example
# Python ma.MaskedArray - Repeat elements of a masked array import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy # The "repeats" parameter sets the number of repetitions for each element. # The repeats is broadcasted to fit the shape. print("
Result...
",maskArr.repeat(3))
Output
Array... [[55 85 59 77] [67 33 39 57] [29 88 51 37] [56 45 99 85]] Array type... int32 Array Dimensions... 2 Our Masked Array [[-- -- 59 77] [67 33 -- 57] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int32 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result... [-- -- -- -- -- -- 59 59 59 77 77 77 67 67 67 33 33 33 -- -- -- 57 57 57 29 29 29 88 88 88 51 51 51 -- -- -- 56 56 56 -- -- -- 99 99 99 85 85 85]
- Related Articles
- Repeat elements of a masked array along given axis in NumPy
- Repeat elements of a masked array along axis 1 in NumPy
- Repeat elements of a masked array along axis 0 in NumPy
- Count the non-masked elements of the masked array in Numpy
- Return the average of the masked array elements in Numpy
- Compute the median of the masked array elements in Numpy
- Return the variance of the masked array elements in Numpy
- Compute the differences between consecutive elements of a masked array in Numpy
- Copy and return all the elements of a masked array in Numpy
- Get the number of elements of the Masked Array in Numpy
- Convert Masked Array elements to Float Type in Numpy
- Count the non-masked elements of the masked array along axis 0 in Numpy
- Count the non-masked elements of the masked array along axis 1 in Numpy
- Return the standard deviation of the masked array elements in NumPy
- Count the non-masked elements of the masked array along the given axis in Numpy
