# Return a view of the masked array with axes transposed in NumPy

To return a view of the array with axes transposed, use the ma.MaskedArray.transpose() method in Numpy. For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does a[:, np.newaxis]. For a 2-D array, this is a standard matrix transpose.

The axes can be,

• None or no argument − reverses the order of the axes.

• tuple of ints − i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.

• n ints − same as an n-tuple of the same ints

## Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[49, 85, 45], [67, 33, 59]])
print("Array...", arr)
print("Array type...", arr.dtype)

Get the dimensions of the Array −

print("Array Dimensions...",arr.ndim)


Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])
print("Our Masked Array", maskArr)
print("Our Masked Array type...", maskArr.dtype)

Get the dimensions of the Masked Array −

print("Our Masked Array Dimensions...",maskArr.ndim)


Get the shape of the Masked Array −

print("Our Masked Array Shape...",maskArr.shape)

Get the number of elements of the Masked Array −

print("Elements in the Masked Array...",maskArr.size)


Return a view of the array with axes transposed, use the ma.MaskedArray.transpose() method in Numpy −

print("Result...",maskArr.transpose())

## Example

# Python ma.MaskedArray - Return a view of the array with axes transposed

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[78, 85, 51], [56, 33, 97]])
print("Array...", arr)
print("Array type...", arr.dtype)

# Get the dimensions of the Array
print("Array Dimensions...",arr.ndim)

# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[0, 1, 0], [ 0, 0, 0]])
print("Our Masked Array", maskArr)
print("Our Masked Array type...", maskArr.dtype)

# Get the dimensions of the Masked Array
print("Our Masked Array Dimensions...",maskArr.ndim)

# Get the shape of the Masked Array
print("Our Masked Array Shape...",maskArr.shape)

# Get the number of elements of the Masked Array
print("Elements in the Masked Array...",maskArr.size)

# To return a view of the array with axes transposed, use the ma.MaskedArray.transpose() method in Numpy
print("Result...",maskArr.transpose())

## Output

Array...
[[78 85 51]
[56 33 97]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[78 -- 51]
[56 33 97]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(2, 3)

Elements in the Masked Array...
6

Result...
[[78 56]
[-- 33]
[51 97]]

Updated on: 04-Feb-2022

73 Views

##### Kickstart Your Career

Get certified by completing the course

Advertisements