- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Swap the bytes of the masked array data inplace in Numpy
To swap the bytes of the masked array, use the ma.MaskedArray.byteswap() method in Numpy. The parameter "inplace" is set to True i.e. swap bytes in-place.
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number are swapped individually. It returns the byteswapped array. If inplace is True, this is a view to self.
The numpy.ma.MaskedArray is a subclass of ndarray designed to manipulate numerical arrays with missing data. An instance of MaskedArray can be thought as the combination of several elements −
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
Swap the bytes of the masked array, use the ma.MaskedArray.byteswap() method in Numpy. The parameter "inplace" is set to True i.e. swap bytes in-place. The default is False −
print("
After Swap...
",maskArr.byteswap(inplace=True))
Example
# Python ma.MaskedArray - Swap the bytes of the masked array data inplace import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To swap the bytes of the masked array, use the ma.MaskedArray.byteswap() method in Numpy # The parameter "inplace" is set to True i.e. swap bytes in-place. # The default is False. print("
After Swap...
",maskArr.byteswap(inplace=True))
Output
Array... [[35 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[35 85 --] [67 -- 59]] Our Masked Array type... int32 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 After Swap... [[2522015791327477760 6124895493223874560 --] [4827858800541171712 -- 4251398048237748224]]