Count the non-masked elements of the masked array in Numpy


To count the non-masked elements of the masked array, use the ma.MaskedArray.count() method in Python Numpy. The method returns an array with the same shape as the input array, with the specified axis removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

The axis parameter is the axis or axes along which the count is performed. The default, None, performs the count over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

The keepdims parameter, if is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array.

Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

Get the dimensions of the Array −

print("
Array Dimensions...
",arr.ndim)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

Get the dimensions of the Masked Array −

print("
Our Masked Array Dimensions...
",maskArr.ndim)

Get the shape of the Masked Array −

print("
Our Masked Array Shape...
",maskArr.shape)

Get the number of elements of the Masked Array −

print("
Elements in the Masked Array...
",maskArr.size)

To count the non-masked elements of the masked array, use the ma.MaskedArray.count() method −

print("
Result...
",maskArr.count())

Example

# Python ma.MaskedArray - Count the non-masked elements of the masked array

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To count the non-masked elements of the masked array, use the ma.MaskedArray.count() method print("
Result...
",maskArr.count())

Output

Array...
[[65 68 81]
[93 33 39]
[73 88 51]
[62 45 67]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 81]
[-- 33 39]
[73 -- 51]
[62 -- 67]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 3)

Elements in the Masked Array...
12
Result...
7

Updated on: 03-Feb-2022

403 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements