- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Get the itemsize of the masked array in Numpy
To get the itemsize of the Masked Array, use the ma.MaskedArray.itemsize attribute in Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create a numpy array using the numpy.array() method −
arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
To get the itemsize of the Masked Array, use the ma.MaskedArray.itemsize attribute in Numpy −
print("
Our Masked Array itemsize...
", maskArr.itemsize)
Example
import numpy as np import numpy.ma as ma # Create a numpy array using the numpy.array() method arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize) # Get the dimensions of the Array print("Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # To get the itemsize of the Masked Array, use the ma.MaskedArray.itemsize attribute in Numpy print("
Our Masked Array itemsize...
", maskArr.itemsize)
Output
Array... [[35 85] [67 33]] Array type... int64 Array itemsize... 8 Array Dimensions... 2 Our Masked Array [[35 85] [67 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array itemsize... 8
- Related Articles
- Get the Masked Array Dimensions in Numpy
- Get the datatype of a masked array in NumPy
- Get the fill value of the masked array in Numpy
- Get the current shape of the Masked Array in Numpy
- Get the number of elements of the Masked Array in Numpy
- Get the Imaginary part from the masked array in Numpy
- Get the information about the memory layout of the masked array in Numpy
- Count the non-masked elements of the masked array in Numpy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Check the base of a masked array in NumPy
- Return a copy of the masked array in NumPy
- Dump a pickle of the masked array in NumPy
- Return the mask of a masked array in Numpy
- Swap the bytes of the masked array data in Numpy

Advertisements