
- SQL Tutorial
- SQL - Home
- SQL - Overview
- SQL - RDBMS Concepts
- SQL - Databases
- SQL - Syntax
- SQL - Data Types
- SQL - Operators
- SQL - Expressions
- SQL Database
- SQL - Create Database
- SQL - Drop Database
- SQL - Select Database
- SQL - Rename Database
- SQL - Show Databases
- SQL - Backup Database
- SQL Table
- SQL - Create Table
- SQL - Show Tables
- SQL - Rename Table
- SQL - Truncate Table
- SQL - Clone Tables
- SQL - Temporary Tables
- SQL - Alter Tables
- SQL - Drop Table
- SQL - Delete Table
- SQL - Constraints
- SQL Queries
- SQL - Insert Query
- SQL - Select Query
- SQL - Select Into
- SQL - Insert Into Select
- SQL - Update Query
- SQL - Delete Query
- SQL - Sorting Results
- SQL Views
- SQL - Create Views
- SQL - Update Views
- SQL - Drop Views
- SQL - Rename Views
- SQL Operators and Clauses
- SQL - Where Clause
- SQL - Top Clause
- SQL - Distinct Clause
- SQL - Order By Clause
- SQL - Group By Clause
- SQL - Having Clause
- SQL - AND & OR
- SQL - BOOLEAN (BIT) Operator
- SQL - LIKE Operator
- SQL - IN Operator
- SQL - ANY, ALL Operators
- SQL - EXISTS Operator
- SQL - CASE
- SQL - NOT Operator
- SQL - NOT EQUAL
- SQL - IS NULL
- SQL - IS NOT NULL
- SQL - NOT NULL
- SQL - BETWEEN Operator
- SQL - UNION Operator
- SQL - UNION vs UNION ALL
- SQL - INTERSECT Operator
- SQL - EXCEPT Operator
- SQL - Aliases
- SQL Joins
- SQL - Using Joins
- SQL - Inner Join
- SQL - Left Join
- SQL - Right Join
- SQL - Cross Join
- SQL - Full Join
- SQL - Self Join
- SQL - Delete Join
- SQL - Update Join
- SQL - Left Join vs Right Join
- SQL - Union vs Join
- SQL Keys
- SQL - Unique Key
- SQL - Primary Key
- SQL - Foreign Key
- SQL - Composite Key
- SQL - Alternate Key
- SQL Indexes
- SQL - Indexes
- SQL - Create Index
- SQL - Drop Index
- SQL - Show Indexes
- SQL - Unique Index
- SQL - Clustered Index
- SQL - Non-Clustered Index
- Advanced SQL
- SQL - Wildcards
- SQL - Comments
- SQL - Injection
- SQL - Hosting
- SQL - Min & Max
- SQL - Null Functions
- SQL - Check Constraint
- SQL - Default Constraint
- SQL - Stored Procedures
- SQL - NULL Values
- SQL - Transactions
- SQL - Sub Queries
- SQL - Handling Duplicates
- SQL - Using Sequences
- SQL - Auto Increment
- SQL - Date & Time
- SQL - Cursors
- SQL - Common Table Expression
- SQL - Group By vs Order By
- SQL - IN vs EXISTS
- SQL - Database Tuning
- SQL Function Reference
- SQL - Date Functions
- SQL - String Functions
- SQL - Aggregate Functions
- SQL - Numeric Functions
- SQL - Text & Image Functions
- SQL - Statistical Functions
- SQL - Logical Functions
- SQL - Cursor Functions
- SQL - JSON Functions
- SQL - Conversion Functions
- SQL - Datatype Functions
- SQL Useful Resources
- SQL - Questions and Answers
- SQL - Quick Guide
- SQL - Useful Functions
- SQL - Useful Resources
- SQL - Discussion
SQL - TAN() Function
SQL TAN() is a mathematical function that fetches the tangent of a numerical value as well as an angles value like PI(), PI()/2, PI()/3, PI()/4, and PI()/6, and returns the float expression representing the tangent of the given number in radians.
Syntax
Following is the syntax of the SQL TAN() function −
SELECT TAN(X) AS alias_name
Following is the syntax to use the TAN function in a SQL table −
SELECT TAN(Integer_column_name) AS Alias_Name FROM table_name;
We can use the above syntax, which will accept the column name that accepts the integer value, to perform the TAN function to find the tangent value.
Parameters
x − is the numeric value which returns in radians.
Example
In the following example, we are performing the SQL TAN() function, which will show the tangent of the specified number.
Following is the query −
SELECT TAN(10) AS tan;
Output
When we execute the above query, we get the tangent of the 10.
+--------------------+ | tan | +--------------------+ | 0.6483608274590866 | +--------------------+
Example
In the following example, we are fetching the tangent value of the negative and 0 values as well.
Following is the query −
SELECT TAN(0) AS tanOfZero, TAN(-16) AS tanOfNegative;
Output
Following is the output of the above query, which will displays the tangent of zero and a negative value −
+-----------+---------------------+ | tanOfZero | tanOfNegative | +-----------+---------------------+ | 0 | -0.3006322420239034 | +-----------+---------------------+
Example
In the following example, we are fetching the name and the tangent of the salary of the customer's table.
Let’s create a table named customers using the CREATE statement −
CREATE TABLE customers(ID INT NOT NULL PRIMARY KEY(ID), NAME VARCHAR(30) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(30), SALARY DECIMAL(18, 2));
Let’s insert the data into the CUSTOMERS using the INSERT statement −
insert INTO customers VALUES(1, 'Ramesh', 32, 'Ahmedabad', 2000); insert INTO customers VALUES(2, 'Aman' 23, 'Ranchi', 40000); insert INTO customers VALUES(3, 'kaushik', 23, 'Kota', 2000); insert INTO customers VALUES(4, 'Chaitali', 25, 'Mumbai', 6500); insert INTO customers VALUES(5, 'Rakesh', 24, 'Kota', 30000); insert INTO customers VALUES(6, 'Vivek', 22, 'Ranchi', 35000); insert INTO customers VALUES(7, 'Akash', 22, 'Ranchi', 50000);
Let’s display the customers details using the SELECT statement −
SELECT * FROM customers;
Following is the customers table −
+------+----------+------+-----------+--------+ | ID | NAME | AGE | ADDRESS | SALARY | +------+----------+------+-----------+--------+ | 1 | Ramesh | 32 | Ahmedabad | 2000 | | 2 | Aman | 23 | Ranchi | 40000 | | 3 | kaushik | 23 | Kota | 2000 | | 4 | Chaitali | 25 | Mumbai | 6500 | | 5 | Rakesh | 24 | kota | 30000 | | 6 | Vivek | 22 | Ranchi | 35000 | | 7 | Akash | 22 | Ranchi | 50000 | +------+----------+------+-----------+--------+
Following is the query to fetch the name and tangent −
SELECT NAME, TAN(SALARY) AS tanSalary FROM CUSTOMERS;
Output
Following is the output of the above SQL query. It displays the customers’ names and tangent salaries −
+----------+---------------------+ | NAME | tanSalary | +----------+---------------------+ | Ramesh | -2.530998328093341 | | kaushik | -2.530998328093341 | | Chaitali | 0.04482971803926599 | | Aman | 2.9342108240743503 | | Rakesh | 1.3457841987739905 | | Vivek | -0.5253912236027812 | | Akash | 55.928056909865184 | +----------+---------------------+