
- SQL Tutorial
- SQL - Home
- SQL - Overview
- SQL - RDBMS Concepts
- SQL - Databases
- SQL - Syntax
- SQL - Data Types
- SQL - Operators
- SQL - Expressions
- SQL Database
- SQL - Create Database
- SQL - Drop Database
- SQL - Select Database
- SQL - Rename Database
- SQL - Show Databases
- SQL - Backup Database
- SQL Table
- SQL - Create Table
- SQL - Show Tables
- SQL - Rename Table
- SQL - Truncate Table
- SQL - Clone Tables
- SQL - Temporary Tables
- SQL - Alter Tables
- SQL - Drop Table
- SQL - Delete Table
- SQL - Constraints
- SQL Queries
- SQL - Insert Query
- SQL - Select Query
- SQL - Select Into
- SQL - Insert Into Select
- SQL - Update Query
- SQL - Delete Query
- SQL - Sorting Results
- SQL Views
- SQL - Create Views
- SQL - Update Views
- SQL - Drop Views
- SQL - Rename Views
- SQL Operators and Clauses
- SQL - Where Clause
- SQL - Top Clause
- SQL - Distinct Clause
- SQL - Order By Clause
- SQL - Group By Clause
- SQL - Having Clause
- SQL - AND & OR
- SQL - BOOLEAN (BIT) Operator
- SQL - LIKE Operator
- SQL - IN Operator
- SQL - ANY, ALL Operators
- SQL - EXISTS Operator
- SQL - CASE
- SQL - NOT Operator
- SQL - NOT EQUAL
- SQL - IS NULL
- SQL - IS NOT NULL
- SQL - NOT NULL
- SQL - BETWEEN Operator
- SQL - UNION Operator
- SQL - UNION vs UNION ALL
- SQL - INTERSECT Operator
- SQL - EXCEPT Operator
- SQL - Aliases
- SQL Joins
- SQL - Using Joins
- SQL - Inner Join
- SQL - Left Join
- SQL - Right Join
- SQL - Cross Join
- SQL - Full Join
- SQL - Self Join
- SQL - Delete Join
- SQL - Update Join
- SQL - Left Join vs Right Join
- SQL - Union vs Join
- SQL Keys
- SQL - Unique Key
- SQL - Primary Key
- SQL - Foreign Key
- SQL - Composite Key
- SQL - Alternate Key
- SQL Indexes
- SQL - Indexes
- SQL - Create Index
- SQL - Drop Index
- SQL - Show Indexes
- SQL - Unique Index
- SQL - Clustered Index
- SQL - Non-Clustered Index
- Advanced SQL
- SQL - Wildcards
- SQL - Comments
- SQL - Injection
- SQL - Hosting
- SQL - Min & Max
- SQL - Null Functions
- SQL - Check Constraint
- SQL - Default Constraint
- SQL - Stored Procedures
- SQL - NULL Values
- SQL - Transactions
- SQL - Sub Queries
- SQL - Handling Duplicates
- SQL - Using Sequences
- SQL - Auto Increment
- SQL - Date & Time
- SQL - Cursors
- SQL - Common Table Expression
- SQL - Group By vs Order By
- SQL - IN vs EXISTS
- SQL - Database Tuning
- SQL Function Reference
- SQL - Date Functions
- SQL - String Functions
- SQL - Aggregate Functions
- SQL - Numeric Functions
- SQL - Text & Image Functions
- SQL - Statistical Functions
- SQL - Logical Functions
- SQL - Cursor Functions
- SQL - JSON Functions
- SQL - Conversion Functions
- SQL - Datatype Functions
- SQL Useful Resources
- SQL - Questions and Answers
- SQL - Quick Guide
- SQL - Useful Functions
- SQL - Useful Resources
- SQL - Discussion
SQL - EXP() Function
The SQL EXP() function accepts a numeric value as an argument and calculates the base of the natural logarithms, e, to the power of the given value. In other words, this function returns Ex, where x is the argument, and E is Euler's constant, the base of the natural logarithms.
The Euler’s number is simply defined as a mathematical expression that is usually used as the base of natural logarithms. It is a non-terminating and a non-recurring decimal number that holds the value of 2.718281828459045… However, the number is constricted to only two decimals in most problems to be solved, i.e., 2.71. This Euler’s number is mostly used in problems that deal with exponential functions (either increasing or decreasing). The number is denoted by a letter e.
Syntax
Following is the syntax of SQL EXP() function −
EXP(x)
where, x is the value for which the exponential value needs to be calculated.
Example
The exponential value of 0 is 1.
In the following example we are trying to pass the value 0 as an argument to the method.
SELECT EXP(0) AS exp_value
When we run above program, it produces following result −
+-----------+ | exp_Value | +-----------+ | 1 | +-----------+
Example
In here, we are passing a fractional value '76.45' as an argument to the method −
SELECT EXP(76.45) AS exp_value
While executing the above code we get the following output −
+----------------------+ | exp_Value | +----------------------+ | 1.59152381451917E+33 | +----------------------+
Example
Now, we are trying to pass the value '1' to this function as a string.
SELECT EXP('1') AS exp_value
Following is an output of the above code −
+------------------+ | exp_Value | +------------------+ | 2.71828182845905 | +------------------+
Example
We can also pass negative value as an argument to this function as shown below −
SELECT EXP(-76) AS exp_value
Output of the above code is as follows −
+----------------------+ | exp_Value | +----------------------+ | 9.85415468611126E-34 | +----------------------+
Example
We can also pass the mathematical constant PI as an argument to this function, it returns it's equivalent exponential value.
SELECT EXP(PI()) AS exp_value
Output of the above code is as follows −
+------------------+ | exp_Value | +------------------+ | 23.1406926327793 | +------------------+
Example
Assume we have created a table with name CUSTOMERS as shown below −
create table CUSTOMERS(ID INT NOT NULL, NAME VARCHAR(20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(25), SALARY DECIMAL(18, 2), PRIMARY KEY(ID)); Commands completed successfully.
Let us insert r values into it −
insert INTO CUSTOMERS VALUES(1, 'Ramesh', 32, 'Ahmedabad', 2000.00); insert INTO CUSTOMERS VALUES(2, 'Khilan', 25, 'Delhi', 1500.00); insert INTO CUSTOMERS VALUES(3, 'kaushik', 23, 'Kota', 2000.00); insert INTO CUSTOMERS VALUES(4, 'Chaitali', 25, 'Mumbai', 6500.00); insert INTO CUSTOMERS VALUES(5, 'Hardik', 27, 'Bhopal', 8500.00); insert INTO CUSTOMERS VALUES(6, 'Komal', 22, 'MP', 4500.00); insert INTO CUSTOMERS VALUES(7, 'Muffy', 24, 'Indore', 10000.00);
Following query calculates the exponential value of the age of all the customers −
SELECT NAME, AGE, SALARY, EXP(AGE) AS exp_salaryvalue FROM CUSTOMERS
The result produced is as follows −
+----------+-----+----------+------------------+ | NAME | AGE | SALARY | exp_agevalue | +----------+-----+----------+------------------+ | Ramesh | 32 | 2000.00 | 78962960182680.7 | | Khilan | 25 | 1500.00 | 72004899337.3859 | | kaushik | 23 | 2000.00 | 9744803446.2489 | | Chaitali | 25 | 6500.00 | 72004899337.3859 | | Hardik | 27 | 8500.00 | 532048240601.799 | | Komal | 22 | 4500.00 | 3584912846.13159 | | Muffy | 24 | 10000.00 | 26489122129.8435 | +----------+-----+----------+------------------+