- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Return all the non-masked data as a 1-D array in Numpy

To return all the non-masked data as a 1-D array, use the **ma.MaskedArray.compressed() **method in Numpy. A mask is either nomask, indicating that no value of the associated array is invalid, or an
array of booleans that determines for each element of the associated array whether the value is
valid or not.

The numpy.ma.MaskedArray is a subclass of ndarray designed to manipulate numerical arrays with missing data. An instance of MaskedArray can be thought as the combination of several elements:

## Steps

At first, import the required library −

import numpy as np import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)

Get the dimensions of the Array −

print("Array Dimensions...\n",arr.ndim)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)

Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)

Get the shape of the Masked Array −

print("\nOur Masked Array Shape...\n",maskArr.shape)

Get the number of elements of the Masked Array −

print("\nElements in the Masked Array...\n",maskArr.size)

Return all the non-masked data as a 1-D array, use the ma.MaskedArray.compressed() method in Numpy −

print("\nReturn Value...\n",maskArr.compressed())

## Example

# Python ma.MaskedArray - Return all the non-masked data as a 1-D array import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[35, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To return all the non-masked data as a 1-D array, use the ma.MaskedArray.compressed() method in Numpy print("\nReturn Value...\n",maskArr.compressed())

## Output

Array... [[35 85 45] [67 33 59]] Array type... int64 Array Dimensions... 2 Our Masked Array [[35 85 --] [67 -- 59]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 3) Elements in the Masked Array... 6 Return Value... [35 85 67 59]

- Related Questions & Answers
- Return the underlying data as a view of the masked array in Numpy
- Return a list of slices corresponding to the masked clumps of a 1-D array in Numpy
- Count the non-masked elements of the masked array along axis 1 in Numpy
- Stack 1-D arrays as columns into a 2-D array in Numpy
- Return the pickle of the masked array as a string in NumPy
- Return the data of a masked array as an ndarray
- Return an empty masked array of the given shape where all the data are masked in Numpy
- Return the average of the masked array elements axis 1 in Numpy
- Copy and return all the elements of a masked array in Numpy
- Count the non-masked elements of the masked array in Numpy
- Return an empty masked array of the given shape and dtype where all the data are masked in Numpy
- Return a copy of the masked array in NumPy
- Return the mask of a masked array in Numpy
- Return the data portion of the masked array as a hierarchical Python list
- Return the masked array data as a string containing the raw bytes in the array and fill the invalid entries in Numpy