- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the data of a masked array as an ndarray
To return the data of a masked array as an ndarray, use the ma.getdata() method in Python Numpy. Returns the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass if not.
The subok parameter suggest whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray if appropriate (True, default).
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Creating a 4x4 array with int elements using the numpy.arange() method −
arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Get the shape of the Array −
print("
Our Masked Array Shape...
",arr.shape)
Get the number of elements of the Array −
print("
Elements in the Masked Array...
",arr.size)
Create a masked array −
arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked
Count the number of masked elements along specific axis −
print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))
Return the mask of a masked array −
print("
The mask of a masked array)...
",ma.getmask(arr))
To return the data of a masked array as an ndarray, use the ma.getdata() method in Python Numpy −
print("
Result (data of a masked array as an ndarray)...
",ma.getdata(arr))
Example
import numpy as np import numpy.ma as ma # Creating a 4x4 array with int elements using the numpy.arange() method arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array)...
",ma.getmask(arr)) # To return the data of a masked array as an ndarray, use the ma.getdata() method in Python Numpy print("
Result (data of a masked array as an ndarray)...
",ma.getdata(arr))
Output
Array... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Array type... int64 Array Dimensions... 2 Our Array type... int64 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The number of masked elements... [1 1 2 3] The mask of a masked array)... [[False True False False] [False True False False] [False True True False] [ True False True True]] Result (data of a masked array as an ndarray)... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]]
- Related Articles
- Return an ndarray of indices that sort the masked array along axis 0 in NumPy
- Return an ndarray of indices that sort the masked array along axis 1 in NumPy
- Return an ndarray of indices that sort the masked array along the specified axis in NumPy
- Return the data portion of the masked array as a hierarchical Python list
- Return the underlying data as a view of the masked array in Numpy
- Return all the non-masked data as a 1-D array in Numpy
- Return an empty masked array of the given shape where all the data are masked in Numpy
- Return the pickle of the masked array as a string in NumPy
- Return the data portion of the masked array as a hierarchical Python list and fill the invalid entries
- Return an empty masked array of the given shape and dtype where all the data are masked in Numpy
- Return the addresses of the data and mask areas of a masked array in Numpy
- Python Pandas - Return DatetimeIndex as object ndarray of datetime.datetime objects
- Python Pandas - Return TimeDeltaIndex as object ndarray of datetime.datetime objects
- Return the masked array data as a string containing the raw bytes in the array and fill the invalid entries in Numpy
- Return a copy of the masked array in NumPy
