

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return a view of the masked array with axis1 and axis2 interchanged in Numpy
To return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method in Numpy.
For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned; otherwise a new array is created. For earlier NumPy versions a view of a is returned only if the order of the axes is changed, otherwise the input array is returned.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
Return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method −
print("\nResult...\n",np.swapaxes(maskArr, 0 , 1))
Example
# Python ma.MaskedArray - Return a view of the array with axis1 and axis2 interchanged import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[[15], [30], [45]]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To return a view of the array with axis1 and axis2 interchanged, use the ma.MaskedArray.swapaxes() method in Numpy print("\nResult...\n",np.swapaxes(maskArr, 0 , 1))
Output
Array... [[[15] [30] [45]]] Array type... int64 Array Dimensions... 3 Our Masked Array [[[15] [--] [45]]] Our Masked Array type... int64 Our Masked Array Dimensions... 3 Our Masked Array Shape... (1, 3, 1) Elements in the Masked Array... 3 Result... [[[15]] [[--]] [[45]]]
- Related Questions & Answers
- Return a view of the masked array with axes transposed in NumPy
- Return the underlying data as a view of the masked array in Numpy
- Return a view of the masked array with axes transposed along given axis in NumPy
- Return a copy of the masked array in NumPy
- Return the mask of a masked array in Numpy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Copy and return all the elements of a masked array in Numpy
- Return the absolute value of a masked Array in NumPy
- Return the average of the masked array elements in Numpy
- Return the variance of the masked array elements in Numpy
- Return the addresses of the data and mask areas of a masked array in Numpy
- Return the pickle of the masked array as a string in NumPy
- Return each element of the masked array rounded in Numpy
- Return array of indices of the maximum values from a masked array in NumPy