- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Return the variance of the masked array elements in Numpy

To return the variance of the masked array elements, use the **ma.MaskedArray.var()** in Python Numpy. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis.

The “axis” parameter is the axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. The dtype is the type to use in computing the variance. For arrays of integer type the default is float64; for arrays of float types it is the same as the array type.

If “keepdims” is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

## Steps

At first, import the required library −

import numpy as np import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)

Get the dimensions of the Array −

print("\nArray Dimensions...\n",arr.ndim)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)

Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)

Get the shape of the Masked Array −

print("\nOur Masked Array Shape...\n",maskArr.shape)

Get the number of elements of the Masked Array −

print("\nElements in the Masked Array...\n",maskArr.size)

To return the variance of the masked array elements, use the ma.MaskedArray.var() in Numpy −

res = maskArr.var() print("\nResult..\n.", res)

## Example

import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To return the variance of the masked array elements, use the ma.MaskedArray.var() in Numpy res = maskArr.var() print("\nResult..\n.", res)

## Output

Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result.. . 472.6942148760331

- Related Questions & Answers
- Return the variance of the masked array elements along column axis in Numpy
- Return the variance of the masked array elements along given axis in Numpy
- Return the variance of the masked array elements along row axis
- Return the average of the masked array elements in Numpy
- Return the standard deviation of the masked array elements in NumPy
- Return the average of the masked array elements axis 1 in Numpy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Count the non-masked elements of the masked array in Numpy
- Return the average of the masked array elements along specific axis in Numpy
- Return the average of the masked array elements over axis 0 in Numpy
- Copy and return all the elements of a masked array in Numpy
- Return a copy of the masked array in NumPy
- Return the mask of a masked array in Numpy
- Return the standard deviation of the masked array elements along given axis in NumPy