Reduce the following fractions to simplest form:(a) $\frac{48}{60}$(b) $\frac{150}{60}$(c) $\frac{84}{98}$(d) $\frac{12}{52}$(e) $\frac{7}{28}$

To do:

We have to reduce the given fractions to their simplest forms.

Solution :

(a) $\frac{48}{60}$

$\frac{48}{60}= \frac{12\times4}{12\times5}$

$= \frac{4}{5}$

Therefore, $\frac{4}{5}$ is the simplest form of $\frac{48}{60}$.

(b) $\frac{150}{60}$

$\frac{150}{60}= \frac{30\times5}{30\times2}$

$= \frac{5}{2}$

Therefore, $\frac{5}{2}$ is the simplest form of $\frac{150}{60}$.

(c) $\frac{84}{98}$

$\frac{84}{98}= \frac{14\times6}{14\times7}$

$= \frac{6}{7}$

Therefore, $\frac{6}{7}$ is the simplest form of $\frac{84}{98}$.

(d) $\frac{12}{52}$

$\frac{12}{52}= \frac{4\times3}{4\times13}$

$= \frac{3}{13}$

Therefore, $\frac{3}{13}$ is the simplest form of $\frac{12}{52}$.

(e) $\frac{7}{28}$

$\frac{7}{28}= \frac{7\times1}{7\times4}$

$= \frac{1}{4}$

Therefore, $\frac{1}{4}$ is the simplest form of $\frac{7}{28}$.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

63 Views