Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:(i) $ \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} $(ii) $ \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} $(iii) $ \frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3} $(iv) $ \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} $
To do:
We have to express each of the given sums as a rational number.
Solution:
(i) $\frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3}=(\frac{2}{5}+\frac{-4}{5})+(\frac{7}{3}+\frac{-1}{3})$
$=(\frac{2-4}{5})+(\frac{7-1}{3})$
$=\frac{-2}{5}+\frac{6}{3}$
$=\frac{-2}{5}+\frac{2}{1}$
$=\frac{2}{1}-\frac{2}{5}$
$=\frac{10-2}{5}$
$=\frac{8}{5}$
(ii) $\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}=(\frac{3}{7}+\frac{-11}{7})+(\frac{-4}{9}+\frac{7}{9})$
$=\frac{3-11}{7}+\frac{-4+7}{9}$
$=\frac{-8}{7}+\frac{3}{9}$
$=\frac{-8}{7}+\frac{1}{3}$
$=\frac{-24+7}{21}$
$=\frac{-17}{21}$
(iii) $\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}=(\frac{2}{5}+\frac{4}{5})+(\frac{8}{3}+\frac{-2}{3})+\frac{-11}{15}$
$=\frac{2+4}{5}+\frac{8-2}{3}+\frac{-11}{15}$
$=\frac{6}{5}+\frac{6}{3}+\frac{-11}{15}$
$=\frac{18+30-11}{15}$
$=\frac{48-11}{15}$
$=\frac{37}{15}$
(iv) $\frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21}=(\frac{4}{7}+\frac{-13}{7})+(\frac{-8}{9}+\frac{17}{21})+0$
$=\frac{4-13}{7}+\frac{-56+51}{63}$
$=\frac{-9}{7}+\frac{-5}{63}$
$=\frac{-81-5}{63}$
$=\frac{-86}{63}$
Related Articles Re-arrange suitably and find the sum in each of the following:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
Express each of the following as a rational number of the form $\frac{p}{q}$(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)
Multiply:(i) \( \frac{7}{11} \) by \( \frac{5}{4} \)(ii) \( \frac{5}{7} \) by \( \frac{-3}{4} \)(iii) \( \frac{-2}{9} \) by \( \frac{5}{11} \)(iv) \( \frac{-3}{17} \) by \( \frac{-5}{-4} \)(v) \( \frac{9}{-7} \) by \( \frac{36}{-11} \)(vi) \( \frac{-11}{13} \) by \( \frac{-21}{7} \)(vii)\( -\frac{3}{5} \) by \( -\frac{4}{7} \)(viii) \( -\frac{15}{11} \) by 7
Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
Add the following rational numbers:(i) \( \frac{-5}{7} \) and \( \frac{3}{7} \)(ii) \( \frac{-15}{4} \) and \( \frac{7}{4} \)(iii) \( \frac{-8}{11} \) and \( \frac{-4}{11} \)(iv) \( \frac{6}{13} \) and \( \frac{-9}{13} \)
Subtract the first rational number from the second in each of the following:(i) \( \frac{3}{8}, \frac{5}{8} \)(ii) \( \frac{-7}{9}, \frac{4}{9} \)(iii) \( \frac{-2}{11}, \frac{-9}{11} \)(iv) \( \frac{11}{13}, \frac{-4}{13} \)(v) \( \frac{1}{4}, \frac{-3}{8} \)(vi) \( \frac{-2}{3}, \frac{5}{6} \)(vii) \( \frac{-6}{7}, \frac{-13}{14} \)(viii) \( \frac{-8}{33}, \frac{-7}{22} \)
Fill in the blanks:(i) \( -4 \times \frac{7}{9}=\frac{7}{9} \times -4 \)(ii) \( \frac{5}{11} \times \frac{-3}{8}=\frac{-3}{8} \times\frac{5}{11} \)(iii) \( \frac{1}{2} \times\left(\frac{3}{4}+\frac{-5}{12}\right)=\frac{1}{2} \times(\frac{3}{4})+\frac{1}{2} \times \frac{-5}{12}\)(iv) $\frac{-4}{5} \times(\frac{5}{7} \times \frac{-8}{9})=(\frac{-4}{5} \times$____ ) $\times\frac{-8}{9}$
Evaluate each of the following:(i) \( \frac{2}{3}-\frac{3}{5} \)(ii) \( \frac{-4}{7}-\frac{2}{-3} \)(iii) \( \frac{4}{7}-\frac{-5}{-7} \)(iv) \( -2-\frac{5}{9} \)(v) \( \frac{-3}{-8}-\frac{-2}{7} \)(vi) \( \frac{-4}{13}-\frac{-5}{26} \)(vii) \( \frac{-5}{14}-\frac{-2}{7} \).(viii) \( \frac{13}{15}-\frac{12}{25} \)(ix) \( \frac{-6}{13}-\frac{-7}{13} \)(x) \( \frac{7}{24}-\frac{19}{36} \)(xi) \( \frac{5}{63}-\frac{-8}{21} \)
Simplify:(i) \( \frac{8}{9}+\frac{-11}{5} \)(ii) \( 3+\frac{5}{-7} \)(iii) \( \frac{1}{-12} \) and \( \frac{2}{-15} \)(iv) \( \frac{-8}{19}+\frac{-4}{57} \)(v) \( \frac{7}{9}+\frac{3}{-4} \)(vi) \( \frac{5}{26}+\frac{11}{-39} \)(vii) \( \frac{-16}{9}+\frac{-5}{12} \)(viii) \( \frac{-13}{8}+\frac{5}{36} \)(ix) \( 0+\frac{-3}{5} \)(x) \( 1+\frac{-4}{5} \)(xi) \( \frac{-5}{16}+\frac{7}{24} \)
Verify commutativity of addition of rational numbers for each of the following pairs of rational numbers:(i) \( \frac{-11}{5} \) and \( \frac{4}{7} \)(ii) \( \frac{4}{9} \) and \( \frac{7}{-12} \)(iii) \( \frac{-3}{5} \) and \( \frac{-2}{-15} \)(iv) \( \frac{2}{-7} \) and \( \frac{12}{-35} \)(v) 4 and \( \frac{-3}{5} \)(vi) \( -4 \) and \( \frac{4}{-7} \)
Name the property of multiplication of rational numbers illustrated by the following statements:(i) \( \frac{-5}{16} \times \frac{8}{15}=\frac{8}{15} \times \frac{-5}{16} \)(ii) \( \frac{-17}{5} \times 9=9 \times \frac{-17}{5} \)(iii) \( \frac{7}{4} \times\left(\frac{-8}{3}+\frac{-13}{12}\right)=\frac{7}{4} \times \frac{-8}{3}+\frac{7}{4} \times \frac{-13}{12} \)(iv) \( \frac{-5}{9} \times\left(\frac{4}{15} \times \frac{-9}{8}\right)=\left(\frac{-5}{9} \times \frac{4}{15}\right) \times \frac{-9}{8} \)(v) \( \frac{13}{-17} \times 1=\frac{13}{-17}=1 \times \frac{13}{-17} \)(vi) \( \frac{-11}{16} \times \frac{16}{-11}=1 \)(vii) \( \frac{2}{13} \times 0=0=0 \times \frac{2}{13} \)(viii) \( \frac{-3}{2} \times \frac{5}{4}+\frac{-3}{2} \times \frac{-7}{6}=\frac{-3}{2} \times (\frac{5}{4}+\frac{-7}{6}) \)
Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
Find the product:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
Kickstart Your Career
Get certified by completing the course
Get Started