- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Subtract the first rational number from the second in each of the following:
(i) $ \frac{3}{8}, \frac{5}{8} $
(ii) $ \frac{-7}{9}, \frac{4}{9} $
(iii) $ \frac{-2}{11}, \frac{-9}{11} $
(iv) $ \frac{11}{13}, \frac{-4}{13} $
(v) $ \frac{1}{4}, \frac{-3}{8} $
(vi) $ \frac{-2}{3}, \frac{5}{6} $
(vii) $ \frac{-6}{7}, \frac{-13}{14} $
(viii) $ \frac{-8}{33}, \frac{-7}{22} $
To do:
We have to subtract the first rational number from the second.
Solution:
We know that,
$(-) \times(-)=(+)$
Therefore,
(i) Subtracting $\frac{3}{8}$ from $\frac{5}{8}$, we get,
$\frac{5}{8}-\frac{3}{8}=\frac{5-3}{8}$
$=\frac{2}{8}$
$=\frac{1}{4}$
(ii) Subtracting $\frac{-7}{9}$ from $\frac{4}{9}$, we get,
$\frac{4}{9}-(\frac{-7}{9})=\frac{4}{9}+\frac{7}{9}$
$=\frac{4+7}{9}$
$=\frac{11}{9}$
(iii) Subtracting $\frac{-2}{11}$ from $\frac{-9}{11}$, we get,
$\frac{-9}{11}-(\frac{-2}{11})=\frac{-9}{11}+\frac{2}{11}$
$=\frac{-9+2}{11}$
$=\frac{-7}{11}$
(iv) Subtracting $\frac{11}{13}$ from $\frac{-4}{13}$, we get,
$\frac{-4}{13}-\frac{11}{13}=\frac{-4-11}{13}$
$=\frac{-15}{13}$
(v) Subtracting $\frac{1}{4}$ from $\frac{-3}{8}$, we get,
$\frac{-3}{8}-(\frac{1}{4})=\frac{-3}{8}-\frac{1}{4}$
$=\frac{-3-2}{8}$
$=\frac{-5}{8}$
(vi) Subtracting $\frac{-2}{3}$ from $\frac{5}{6}$, we get,
$\frac{5}{6}-(\frac{-2}{3})=\frac{5}{6}+\frac{2}{3}$
$=\frac{5+2\times2}{6}$
$=\frac{5+4}{6}$
$=\frac{9}{6}$
$=\frac{3}{2}$
(vii) Subtracting $\frac{-6}{7}$ from $\frac{-13}{14}$, we get,
$\frac{-13}{14}-(\frac{-6}{7})=\frac{-13}{14}+\frac{6}{7}$
$=\frac{-13+6\times2}{14}$
$=\frac{-13+12}{14}$
$=\frac{-1}{14}$
(viii) Subtracting $\frac{-8}{33}$ from $\frac{-7}{22}$, we get,
$\frac{-7}{22}-(\frac{-8}{33})=\frac{-7}{22}+\frac{8}{33}$
$=\frac{-7\times3+8\times2}{66}$
$=\frac{-21+16}{66}$
$=\frac{-5}{66}$