- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Use Euclid’s division lemma to show that the cube of any positive integer is of the form $9m, 9m + 1$ or $9m + 8$.
To do :
We have to show that the cube of any positive integer is of the form $9m, 9m + 1$ or $9m + 8$.
Solution :
By Euclid's division algorithm,
$a = b q + r$, where $0 \leq r < b$.
Let a be the positive integer and b $=$ 3.
Now, $a = 3 q + r$, where $0 \leq r < 3$.
The possibilities of r is 0 , 1 , 2.
When $r = 0$,
$a = 3q$
Cubing both the sides,
$a^3 = (3q)^3$
$a^3 = 27q^3$
$a^3 = 9 (3q^3)$
$a^3 = 9m$ where $m = 3q^3$
When $r = 1$,
$a = 3q + 1$
Cubing both the sides,
$a^3 = (3q + 1)^3$
$a^3 = (3q)^3 + 1^3 + 3(3q)(1)(3q + 1)$
$a^3 = 27q^3 + 1 + 9q (3q + 1)$
$a^3 = 27q^3 + 1 + 27q^2 + 9q$
$a^3 = 27q^3 + 27q^2 + 9q + 1$
$a^3 = 9 ( 3q^3 + 3q^2 + q) + 1$
$a^3 = 9m + 1$ where $m = ( 3q^3 + 3q^2 + q)$
When $r = 2$,
$a = 3q + 2$
Cubing both the sides,
$a^3 = (3q + 2)^3$
$a^3 = (3q)^3 + 2^3 + 3(3q)(2)(3q + 2)$
$a^3 = 27q^3 + 8 + 54q^2 + 36q$
$a^3 = 27q^3 + 54q^2 + 36q + 8$
$a^3 = 9 (3q^3 + 6q^2 + 4q) + 8$
$a^3 = 9m + 8$ where $m = (3q^3 + 6q^2 + 4q)$
Therefore, $a$ can be any of the form $9m$ or $9m + 1$ or, $9m + 8$.