- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Show that square of any positive integer is of the form $ 5p, 5p+1, 5p+4 $.
Given:
Square of any positive integer is of the form $5p$, $5p\ +\ 1$, $5p\ +\ 4$.
To prove:
We have to show that the square of any positive integer is of the form $5p$, $5p\ +\ 1$, $5p\ +\ 4$.
Solution:
Let 'a' be an integer such that $a\ =\ 5m\ +\ r$.
According to Euclid's division algorithm:
$a\ =\ bm\ +\ r$, where $0\ \underline{< }\ r\ <\ b$.
Here, b = 5. So,
$a\ =\ 5m\ +\ r$, where $0\ \underline{< }\ r\ <\ 5$.
Now we need to consider all cases of r.
When r = 0:
Let us consider p to be equal to $m^2$.
When $r\ =\ 0$, we can conclude that $a\ =\ 5m$.
$a\ =\ 5m$
$a^2\ =\ ( 5m )^2$
$a^2\ =\ 5 \left( 5m^{2}\right)$
$a^2\ =\ 5p$
When r = 1:
Let us consider p to be equal to $5m^2\ +\ 2m$.
$a\ =\ 5m\ +\ 1$
$a^2\ =\ ( 5m\ +\ 1 )^2$
$a^2\ =\ 25m^2\ +\ 10m\ +\ 1$
$a^2\ =\ 5( 5m^2\ +\ 2m )\ +\ 1$
$a^2\ =\ 5p\ +\ 1$
When r = 2:
Let us consider p to be equal to $5m^2\ +\ 4m$.
$a\ =\ 5m\ +\ 2$
$a^2\ =\ ( 5m\ +\ 2 )^2$
$a^2\ =\ 25m^2\ +\ 20m\ +\ 4$
$a^2\ =\ 5 ( 5m^2\ +\ 4m )\ +\ 4$
$a^2\ =\ 5p\ +\ 4$
When r = 3:
Let us consider p to be equal to $5m^2\ +\ 6m\ +\ 1$.
$a\ =\ 5m\ +\ 3$
$a^2\ =\ (5m\ +\ 3)^2$
$a^2\ =\ 25m^2\ +\ 9\ +\ 30m$
$a^2\ =\ 25m^2\ +\ 30m\ +\ 5\ +\ 4$
$a^2\ =\ 5 ( 5m^2\ +\ 6m\ +\ 1 )\ +\ 4$
$a^2\ =\ 5p\ +\ 4$.
When r = 4:
Let us consider p to be equal to $5m^2\ +\ 8m\ +\ 3$.
$a\ =\ 5m\ +\ 4$
$a^2\ =\ (5m\ +\ 4)^2$
$a^2\ =\ 25m^2\ +\ 40m\ +\ 15\ +\ 1$
$a^2\ =\ 5 ( 5m^2\ +\ 8m\ +\ 3 )\ +\ 1$
$a^2\ =\ 5p\ +\ 1$
Hence, the square of any positive integer is of the form 5p or 5p $+$ 1 or 5p $+$ 4.