- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# The refractive index of water is $ 1.33 $ and the speed of light in air is $3\times {10}^{8}m{s}^{-1}$. Calculate the speed of light in water.

**Given:**

Refractive index $(\mu ) \ = \ 1.33$

Speed of light in air $(c) \ = \ 3\times {10}^{8}m{s}^{-1}$

**To find: **Speed of light in the water $(v)$.

**Solution:**

We know that,

$\mu =\frac{c}{v}$

where, $(\mu )$ is the refractive index, $(c)$ is the velocity of light in a vacuum $(3\times {10}^{8}m{s}^{-1})$, $(v)$ is the velocity of light in a substance.

Substituting the given values we get-

$1.33=\frac{3\times {10}^{8}}{v}$

$\frac{133}{100}=\frac{3\times {10}^{8}}{v}$

$v=\frac{3\times {10}^{8}\times 100}{133}$

$v=\frac{300\times {10}^{8}}{133}$

$v=2.25\times {10}^{8}m/s$

Hence, the speed of light in water is **2.25 x 10 ^{8}m/s.**

Advertisements