- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The difference between the simple interest and the compound interest on a sum of money for 3 years at 10% per annum is ₹ 558. Find the sum.
Given :
The difference between the Simple Interest and the Compound Interest on a sum of money for 3 years at 10% per annum$=$ Rs. 558.
To find :
We have to find the sum.
Solution :
Let the sum be P.
Compound interest $=P[(1+\frac{r}{100})^n - 1]$
$=P[(1+\frac{10}{100})^3 - 1]$
$=P[(1+\frac{1}{10})^3 - 1]$
$=P[(\frac{11}{10})^3 - 1]$
$=P[\frac{1331}{1000} - 1]$
$=P[\frac{1331 - 1000}{1000}]$
$=P[\frac{331}{1000} ]$
Simple interest $= \frac{P \times n \times r}{100}$
$= \frac{P \times 3 \times 10}{100}$
$= \frac{3}{10}P$
$CI - SI = 558$
$\frac{331}{1000}P - \frac{3}{10}P = 558$
$\frac{331}{1000}P - \frac{3 \times 100}{10 \times 100}P = 558$
$\frac{331}{1000}P - \frac{300}{1000}P = 558$
$ \frac{31}{1000}P=558$
$ P = \frac{558 \times 1000}{31}$
$P = 18 \times 1000 = 18000$
Therefore, the sum is ₹18000.