The difference between $\frac{3}{5}$ and $\frac{3}{8}$ is ___.
Given: $\frac{3}{5} \ -\ \frac{3}{8}$
To find: $\frac{3}{5} \ -\ \frac{3}{8}$
Solution:
$\frac{3}{5} \ -\ \frac{3}{8}$
Taking LCM of 5 and 8:
$=\ \frac{3( 8) \ -\ 3( 5)}{40}$
$=\ \frac{24\ -\ 15}{40}$
$=\ \frac{9}{40}$
So, the answer is $\frac{9}{40}$.
- Related Articles
- Subtract: $\frac{3}{8}$ from $-\frac{5}{8}$
- Draw number lines and locate the points on them:(a) \( \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4} \)(b) \( \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{7}{8} \)(c) \( \frac{2}{5}, \frac{3}{5}, \frac{8}{5}, \frac{4}{5} \)
- Find six rational number between $\frac{-5}{3} \ and \ \frac{-8}{7}$
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- Which is greater:(i) $\frac{2}{7}$ of $\frac{3}{4}$ or $\frac{3}{5}$ of $\frac{5}{8}$
- Add the following rational numbers:(i)M/b> \( \frac{3}{4} \) and \( \frac{-5}{8} \)(ii) \( \frac{5}{-9} \) and \( \frac{7}{3} \)(iii) \( -3 \) and \( \frac{3}{5} \)(iv) \( \frac{-7}{27} \) and \( \frac{11}{18} \)(v) \( \frac{31}{-4} \) and \( \frac{-5}{8} \)(vi) \( \frac{5}{36} \) and \( \frac{-7}{12} \)(vii) \( \frac{-5}{16} \) and \( \frac{7}{24} \)(viii) \( \frac{7}{-18} \) and \( \frac{8}{27} \)
- Solve the following :$8\frac{1}{2} - 3\frac{5}{8}$
- Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- Simplify the following:$(-\frac{1}{3})^{4} \div(-\frac{1}{3})^{8} \times(-\frac{1}{3})^{5}$.
- Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- Find the sum:$(i)$. $\frac{5}{4}+(-\frac{11}{4})$$(ii)$. $\frac{5}{3}+\frac{3}{5}$$(iii)$. $\frac{-9}{10}+\ \frac{22}{15}$$(iv)$. $\frac{-3}{11}+\frac{5}{9}$$(v)$. $\frac{-8}{19}+(-\frac{2}{57})$$(vi)$. $-\frac{2}{3}+0$$(vii)$. $-2\frac{1}{3}\ +\ 4\frac{3}{5}$
- For the following APs, write the first term and the common difference:$\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, ……..$
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Find the reciprocal of :i) $\frac{2}{-5} \times \frac{3}{-7}$ii) $\frac{-4}{3} \times \frac{-5}{-8}$
- Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$
Kickstart Your Career
Get certified by completing the course
Get Started